

A Dynisco Case Study: From DFMA Implementation Plan to Results

Matthew Miles DFMA and Value Engineering Manager

> Dr. Surinder Sood Principal Engineer

Joel Neri Engineering Manager

Agenda

- Dynisco Review
- Hammer Union Product
- Benchmarking
- DFMA Redesign
- Results
- PDP & TCO

2012 DFMA Forum

DFMA Implementation

By Matthew Miles

DFMA in the Product Development Process

By Kevin Dailida

Tying it all Together: Lean, TCO, DFx, VAVE and Supply Chain/Operations


By John Biagioni

Part Count Reduction

Mark III Sten

- 69 to 48 parts
- 1941

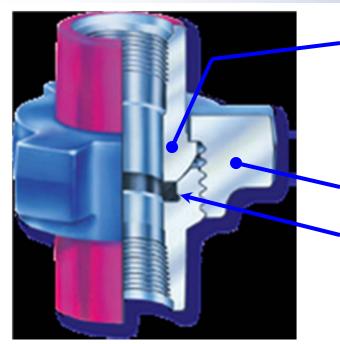
Source: The Genius of Design: Blueprints For War, Television Series

Hammer Union 510

Features

- FM, CSA and ATEX Intrinsically Safe
- Hammer Union pressure fitting
- Shock and vibration resistant
- Eight gage sensor design
- Pressure up to 20,000 PSI (1379 bar)

Typical Applications


- Oil well Servicing
 - Cementing
 - Fracturing
 - Acidizing

Weco[®] Fitting

Hammer Union Fitting or Pressure Transducer

Weco[®] Nut

Seal

Hammer Union Installed

Sledgehammer Impact

Weco® is a registered trademark of FMC Technologies.

Environment

Oil & Gas

Cement

Mud

....and Sledgehammer

"Swings and misses"

Competitive Benchmarking

- 4 Dynisco/Viatran Products
- 7 Competitor Products
- Tear down each unit

- DFA analysis
- DFM "should cost" analyses
- Complete Design analysis

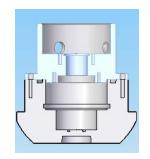
					IJ			H				
		Dynisco/Viatran	Dynisco/Viatran	Dynisco/Viatran	Dynisco/Viatran	Competitor	Competitor	Competitor	Competitor	Competitor	Competitor	Competitor
Description DFA Index	Units %	#1 6.9	#2	#3 7.2	#4 6.3	#1 4.5	# 2 3.6	# 3 8.3	#4 3.1	#5 9.1	#6 6.1	# 7 7.3
DFA Index DFA Part Count (Parts & Processes)	% #	137	7.0 151	134	65	4.5 83	3.6 184	8.3 118	3.1 91	9.1	105	7.3 114
	#	-	-	62				63	58	-		
Component Count	#	85	102	-	33	39 17	106			66	59	62
Theoretical Minimum Part Count	#	22	23	21 17	15		27	25	15 27	31	20	23
Theoretical Assembly Time	Min.	16	21		60	20	41	18		21	18	18
Total Cost		Baseline	1%	21%	72%	-6%	18%	4%	-15%	-1%	-22%	-5%
Base Part												
Cost	\$	Baseline	-46%	-5%	43%	-53%	-31%	-62%	-81%	-77%	-79%	-38%
Billet Size	in.	3.75" dia x 2.19" lg	3.75" dia x 1.25" lg	3.00" dia x 2.50" lg	3.00" dia x 1.25" lg	3.75" dia x 1.5" lg	3.75" dia x 2" lg	3.75" dia x 5.50" lg	3.75" dia x 1.25" lg	3.75" dia x 1.50" lg	3.75" dia. x 3.31" lg.	3.75" dia x 1.38" lg
Billet Weight	lbs.	7.4	4.4	5.7	4.0	5.3	6.2	17.6	4.4	5.3	10.3	5.7
Finished Weight	lbs.	3.9	2.0	3.4	2.0	3.2	3.5	7.9	2.6	3.3	5.0	3.0
Adapter												
Cost	\$	Baseline	-3%	55%	-34%	27%	19%	-53%	13%	1%	-49%	7%
Billet Size	in.	3.25" dia x 2.25" lg	3.25" dia x 2" lg	3.00" dia x 2.50" lg	2.5" dia. x 2.25" lg. tube	3.50" dia x 2.38" lg	3.25" dia x 3.38" lg	3.00" dia x 2.50" lg. .31" thick wall tube	3.38" dia x 1.62" lg	2.5" dia x 5" lg, .38" thick wall tube	2.75" dia. x 2.75" lg.	2.62" dia x 1.38" lg,
Billet Weight	lbs.	5.4	4.7	4.9	4.7	6.4	7.9	2.7	4.1	3.5	4.6	2.7
Finished Weight	lbs.	1.3	1.1	1.8	1.1	2.2	1.8	1	1.5	1.8	1.9	1.0
Weld		NA	EB	NA	EB	NA	NA	NA	TIG	EB	NA	TIG

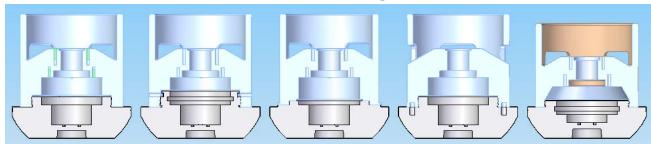
Competitive Benchmarking Results

Hammer Union Pressure Transmitter 510

🔰 Dynisco

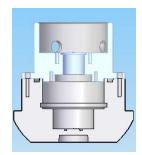
Our Goals:


- •Improve adapter cleaning, reduce corrosion of connector
- •Improve Access & Protection for Connector
 - •Eliminate Adapter-to-Sensor Housing Fasteners
- •Compatibility to Weco[®] Fitting & Customer Electrical Connector
 - •Repairability
- •Cost Effective & Simplify Assembly

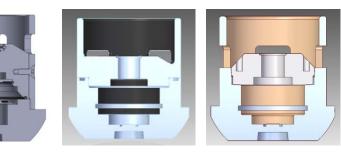

Design Iterations

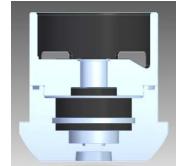
Round 1 - Concepts

Existing 510 Mechanical Cross-Section



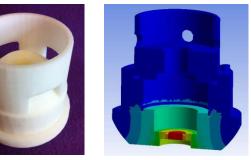
DFA all assemblies

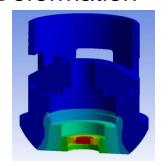

DFM all piece parts

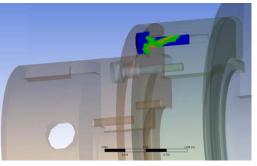

Round 1 Analyses show Design & Cost Targets not achieved

Round 2 - Concepts

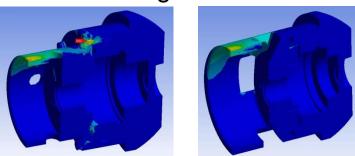
Design Path




Engineering Toolbox


- Rapid Design Iterations
 - 3D Modeling
 - DFMA
- Rapid Prototyping
- Stress Analysis
 - Hand Calculations
 - FEA
- Best Materials & Processes Selection
- Operations/Assembly

Rapid Proto Pressure Deformation



Screw Failure

Design Stress

Quality

• Customer perception:

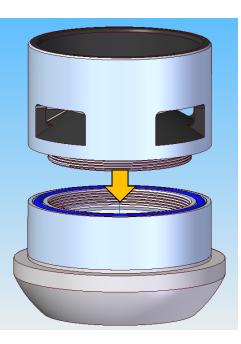
"Screws are failing due to sledgehammer strikes to Adapter"

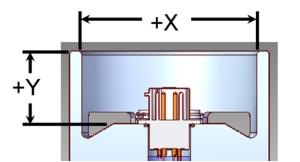
Customer Impact Test Results

- FEA's supported Customer Test Results: Material deformation before screw failure
- Other failure modes:
 - Electrical Connector: Corrosion, hammer strikes

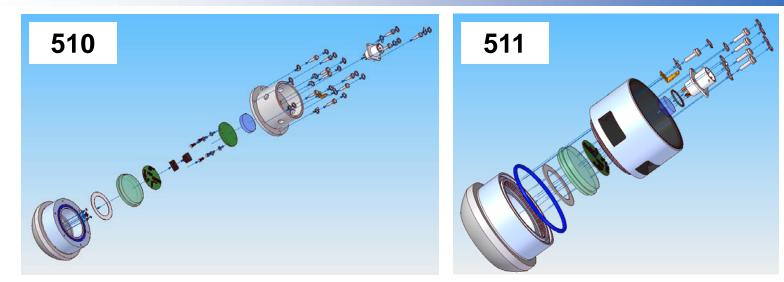
6-Pin Connector

New Design

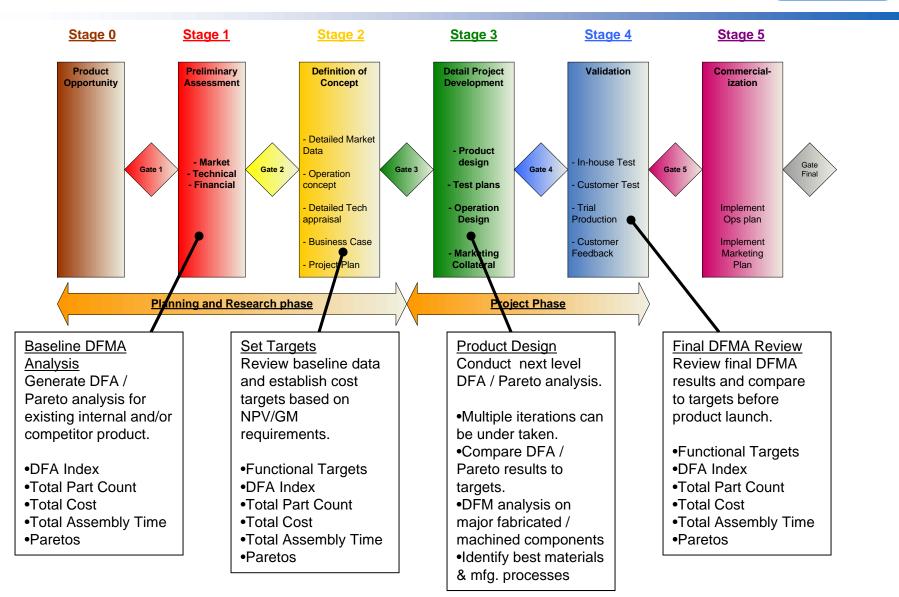

Hammer Union Pressure Transmitter 511



- Investment Cast Adapter
 - Near Net-Shape = Reduced
 Machining
 - Raw material/Finished Part
 - 510 4.7 lbs / 1.1 lbs
 - 511 2.9 lbs / 2.0 lbs
- Debris Egress Windows
 - Windows/sloped surface provide easier cleaning
- Repairability
 - Adapter screws to housing
- Improved Connector Protection & Access
 - Increased X & Y dimensions



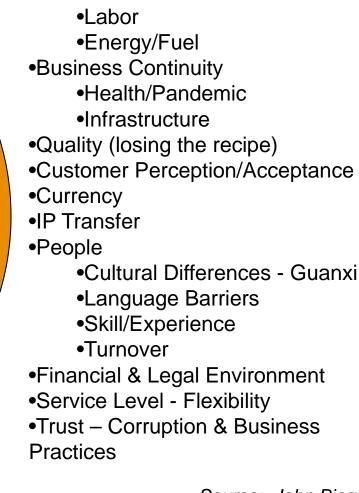
New Design – Part Count Reduction Roper



	<u>510</u>	<u>511</u>
DFA Index	7.0	9.6
Part Count	102	66
Fasteners	82	46
PCBD	2	1

Assembly Time 25% reduction

DFMA Metrics in Revised Dynisco PDP ROPER


Total Cost of Ownership (TCO)

Part Cost (h) Total Landed Cost (h) Freight, insurance, and Duties Potentially a fuel surcharge

Piece

Total Cost of Ownership (s) Overheads Cost of Poor Quality Non-BOM Items (*Packaging Cost*) Inventory carrying costs of extended supply chain Reverse Logistics (*service, warranty, disposal*) Remote Supplier Management One time costs Risk Factor

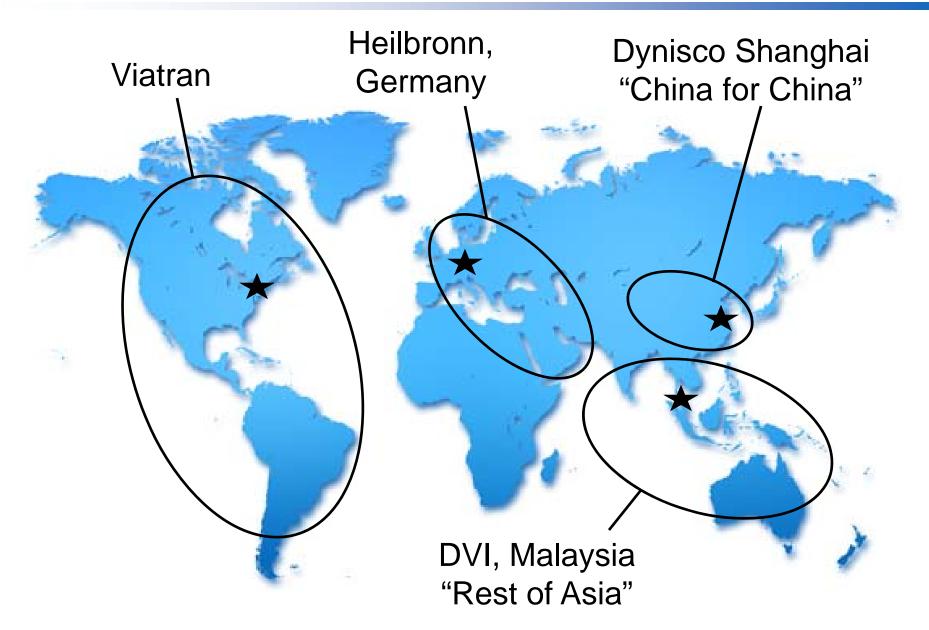
Risk Factors

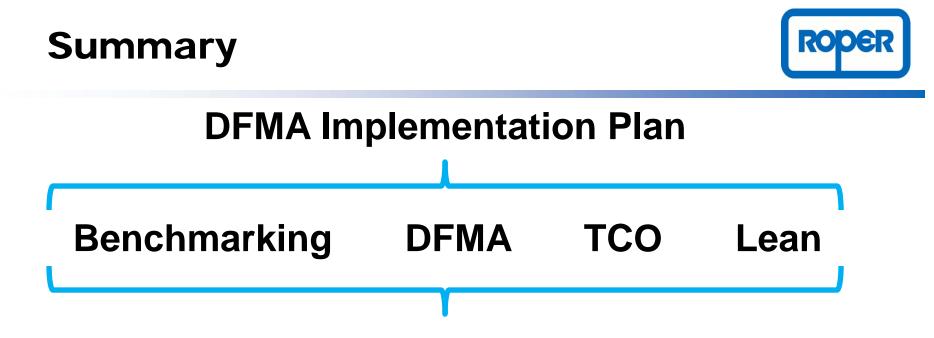
Inflation

Source: John Biagioni Dynisco, Franklin, MA

Total Cost of Ownership (TCO) – Part from China

Value Stream Map





Regional Manufacturing and Distribution

Revised Product Development Process

"the greatest improvements arise from simplification of the product by reducing the number of separate parts"

Questions?

