

Hand-Calculated Savings:

Case studies in the application of a simplified Boothroyd-Dewhurst Methodology in the design and manufacture of complex assemblies

International Forum on Design for Manufacture and Assembly

Providence, RI, 6/14/2013

Silicon Valley / Boston / China

About Acorn

Acorn was Founded in 1993 in Silicon Valley by product development veterans Ken Haven, CEO (MSME Cornell) and Tim Lau, CTO (MSME UC Berkeley). DFM in our DNA.

Today Acorn is a global team of 30+ product development engineers – BSME and MSME.

ACORN's Goal: Incorporate mechanical engineering analysis and manufacturing considerations from the earliest stage of development in order to accelerate the path to market and improve outcomes.

Acorn Global Presence

Silicon Valley (HQ)

Boston/Cambridge

China-Dongguan

Who we Serve

Clients & Markets

Sample Acorn Projects

Sun M5000 SPARC Server

C Server Flip Video Mino & Slide HD Cameras RoboteX Avatar Micro II Surveillance Robot

Apple G4 Tower

Siemens Acuson Ultrasound Imaging

Teradyne – Automated Disk Drive Test Equipment

Acorn Engineering Services

- Full turnkey product design services
 - Conceptual Design
 - Prototype Design / DVT / Tooling Support
 - Production Design / DMT / Regulatory Support
 - Tooling & First Article Inspections / Ongoing Production Support

sacorr

- Engineering analysis (thermal, structural, flow, tolerance, mechanism)
- Specific services to fill in gaps/augment existing development team
- Cost optimization services
 - Labor
 - Parts
 - System level

DFMA and Acorn

- DFMA was integrated into our DNA from the start
- DFMA vs. Boothroyd-Dewhurst
- We are proactive about DFMA
 - CMs incentivized differently for DFMA
 - No methodology sell, no baggage
- Boothroyd-Dewhurst gave us a toolkit
 - To share internally
 - To share with clients

DFMA and Our Clients

Excuses we've heard:

- Baby Steps
- Doesn't have to be a

cultural revolution

• Clients don't always track

cost; we drive this metric

- "Can't estimate cost accurately, especially early in design"
- "Won't affect anything we already do this"

Assembly Time Modeling

- Case studies presented here focus on assembly time optimization only (other DFM incidental)
- Difference between proto & production-level analyses
- These cases both involve assemblies which are:
 - Produced in medium quantity
 - Manually assembled

Assembly Time Model

Simplifying Assumptions:

- Fasteners
- Weight
- Obstructions
- Alignment
- [another example]

$T = (1 + C_1)C_2H + C_3I$

- H = Handling Time
- I = Insertion Time
- C1 = Setup Penalty
- C2 = Number of Setups
- C3 = Number of Passes

Simplifying coefficients:

- Chosen based on knowledge of assembly plan
- Tunable to various manufacturing locales
- In cases below clients withheld assembly data until after our model release

Case 1 – Electro-Optical Prototype

Background:

- Electro-optical test apparatus
- Miniature drive trains move optical elements
- ~12K units/yr
- Early in design process, desired part & assembly-level optimization

sacorn

Case 1 – Model Development

- Original assembly contains 374 parts, 16.6% DFA index
- 50% of time in ~20% of parts
- Largest single contributor is 28% of total (15 min)
- +/- 8% correlation with client assembly data (.92 hrs)
- First pass opportunity identified:
 - Reduce to .31 hours assembly
 - Increase to 28.6 DFA index

Case 1 – Model Application

Actual achieved results after design cycle:

- Reduce assembly time to .43 hours
- Increase DFA index to 20.6%

Focusing Module DFM			Burden	ed Labor	Rate \$/	/hr		Setup Penalty				
	Touch Labor Rol	lup	US:	\$50.00		1.39	cents/sec		25	%		
			China:	\$11.50		0.32	cents/sec					
	Description	Operation	Qty	Min Qty	# Pass	# Setup	Handling (s)	Insertion (s)	Total Time (s)	Operation Cost		
1	Base	Manipulate	1	1	1	1	3	0	3.75	5.208333333		
2	Mounting Bar	Snap	2	2	1	1	1.95	5.5	15.3875	21.37152778		
2.1	Spring Pin	Press	0	0	0	0	2.18	3.5	0	0		
2.2	Rocker Gear	Place	20	20	1	2	1.8	5.5	146.9	204.0277778		
2.2.1	Optical Element	Bond	20	20	1	1	1.43	4	108.9575	151.3298611		
2.2.2	Shaft	Bond	0	0	0	0	1.8	4	0	0		
2.3	Bushing	Place/Press	20	20	1	1	2.35	5	147.5875	204.9826389		
2.4	Bushing	Place	0	0	0	0	2.35	1.5	0	0		
2.5	Spring	Snap	1	1	1	1	5.1	9	15.375	21.35416667		
2.6	Washer	Hold	20	0	1	1	1.69	1.5	64.2225	89.19791667		
2.7	Washer	Hold	0	0	0	0	1.69	1.5	0	0		
2.8	Snap Ring	Snap	0	0	0	0	2.18	3.5	0	0		
2.9	Pinion Shaft	Press	0	0	0	0	1.69	3.5	0	0		
2.10	Pinion	Place	20	20	1	1	1.88	3	98.07	136.2083333		
2.11	Snap Ring	Snap	0	0	0	0	6.85	3.5	0	0		
2.12	Stepper Motor	Snap	20	20	1	4	2.25	4.5	137.25	190.625		
2.12.1	Worm Gear	Bond	0	0	0	0	1.88	4	0	0		
2.12.2	Motor Plate	N/A	20	0	1	1	0	0	0	0		
2.13	Phillips Screw	Screw	0	0	0	0	2.35	11	0	0		
3	Washer	Hold	0	0	0	0	2.18	1.5	0	0		
4	Lock Washer	Hold	0	0	0	0	2.18	1.5	0	0		
5	Hex Screw	Screw	0	0	0	0	2.35	11	0	0		
6	Stepper Board	Snap	1	1	1	1	1.95	5.5	7.9375	11.02430556		
7	Standoff	Screw	0	0	0	0	2.35	7	0	0		
8	Phillips Screw	Screw	0	0	0	0	1.8	11	0	0		
9	Motor Cables	Solder	80	0	1	1	3.6	3.5	568.9	790.1388889		
10	Top Cover	Snap	1	1	1	1	1.95	4.5	6.9375	9.635416667		
11	Shoulder Screw	Screw	20	0	1	1	2.35	8.5	217.5875	302.2048611		

Totals: 0

0.427461806 21.37309028 (man-hours) (dollars)

Asm Eff: 20.6

20.66461428 %

DOW

Case 1 – Model Application

Unique challenges:

- High tolerance (optics, thermal sensitivity)
- Harsh environment limited material choices
- Completed tolerance analysis to assure motor placement for soldering operation

Case 1 – Results

- Cost savings > \$ 500K (parts & asm)
- 100% realized
- Part Count: $374 \rightarrow 148$
- DFA index: 16.6% → 20.6%
- Assembly time: .92 hrs \rightarrow .43 hrs

Case 2 – Tooled Test Assembly

Background:

- Electro-mechanical test apparatus
- ~14K unit build cycle
- ~3 hour anticipated build
- Actually took technicians 6.5 hrs
- Already had tooled plastic parts, had to work within constraints

Case 2 – Model Development

As	sembly uch Labor Rollup	## 1.39 cents/s	ec													S	etup Penalt 25 %
		## 0.36 cents/s	ec					-									
One	eration	Oty Min # Pa #	Se Part Added? A	ccess/Fast hing	Operation	Alian/Insert	Handling Pro Hands Requir	cess Tree Handling To	Manipul: M	laior Axis	Minor Axis	Physical Features Thickness/Size	Δ	B A/B	Handling Insert	ion Total C	ost % Pack
Sub-Asm 1 Pos	sition slider	2 2 1	1 Part Added but Not Secure 1	Fasy Access	1 Place	1 Easy Alian No Resi	1 One Hand	1 UNUSED	1 Fasy 4	1 Direction	2 2 Directions	1 T >2mm S >15	mr 360	180	3 18	15 75 3	271 0.68%
(2x heater 2 App	ply epoxy onto slider	8 0 1	3. Sepearate Operation 2	Non-Mech. Faster	. Chemical Pro	CT. UNUSED	One Hand	1. UNUSED	1. Easy 1.	Any Direction	1. Any Direction	1. T >2mm, S >15	mr 0	0	1 1.13	12 146	52.6 13.12%
2.1 Pos	sition pads onto slide	8 8 1	1. Part Added but Not Secure 1	. Easy Access	1. Place	3. Hard Align, No Resi	1. Dne Hand	1. UNUSED	1. Easy 4.	. 1 Direction	2. 2 Directions	2. T >2mm, S =6~	15 360	180	3 2.1	2.5 37.9	13.7 3.41%
2.2 Che	eck epoxy pad seatir	2 0 1	3. Sepearate Operation 3	Non-Faste ng	1. Manipulation	1. UNUSED	1. Dne Hand	1. UNUSED	1. Easy 4.	1 Direction	2. 2 Directions	1. T >2mm, S >15	mr 360	180	3 1.8	9 22.5	3.13 2.03%
3 Inst	tall O-rings onto shol		2. Part Secured Immediately 1	. Easy Access	1. No Screw or I	 Easy Align w/ Resis Easy Align No Resis 	1. Dne Hand	1. UNUSED	1. Easy 2.	2 Directions	1. Any Direction	1. T >0.25mm	180	0	1 1.13	5 24.8	3.96 2.24%
4 mst	nect ribbon cables t	2 2 1	12 Part Secured Imr. diately 1	Easy Access	1 No Screw or I	C2 Easy Align, No Resis	1 Dne Hand	1 UNUSED	1 Easy 4	1 Direction	4 1 Direction	2 T >2mm S =6~	15 360	360	4 2.25	5 15 1	5.05 1.27%
5.1 Solo	der connector to hea	2 2 1	2 3. Sepearate Operation 2	. Non-Mech. Faste	2. Soldering	1. UNUSED	3. wo Hands	1. UNUSED	1. Easy 4.	1 Direction	4. 1 Direction	2. S =6~15mm	360	360	2 6.75	8 32.9	11.9 2.96%
6 Pos	sition heater strips	2 2 1	2 1. Part Added but of Secure 2	. Medium Access	9. Hold	3 Hard Align No Resig	1 One Hand	1. UNUSED	1. Easy 4.	. 1 Direction	4. 1 Direction	4. T <=2mm, S >6n	nm 360	360	4 2.51	9 24.3	3.77 2.19%
7 Scr	rew down heater strip	4 0 1	2 2. Part Secured I mediately 2	. Medium Access	4. Screw	4. Har Align w/ Resist	1. One Hand	1. UNUSED	2. Difficult 4.	1 Direction	1. Any Direction	5. T <=2mm, S <=6	im 360	0	2 3.38 1	0.5 57.2	20.7 5.16%
8 Inst	tall left spring into lef	1 1 1	1 2. Part Secured Immediately 1 1.2. Part Secured Immediately 1	Easy Access	1. No Screw or 1. No Screw or	L 3. Hard Align, No Resis D 3. Hard Align, No Resis	1. One Hand	1. UNUSED	1. Easy 4.	1 Direction	4. 1 Direction	2. 1 >2mm, S =6~ 2. T >2mm, S =6~	15 360	360 -	4 2.25	5 7.81	2.82 0.70%
10 Inst	tall latch onto cam	2 2 1	2 1. Part Added out Not Secure 1	. Easy Access	1. Place	1. Easy Alio No Resi	1. One Hand	1. UNUSED	1. Easy 4.	. 1 Direction	1. Any Direction	2. T >2mm, S =6~	15 360	0	2 1.8	1.5 7.5 2	2.71 0.68%
11 Inst	tall knob onto cam	2 2 1	2 1. Part Adde but Not Secure 1	Easy Access	2. Hold	1. Easy Align, Io Resi	1. One Hand	1. UNUSED	1. Easy 4.	1 Direction	4. 1 Direction	1. T >2mm, S >15	mr 360	360	4 1.95	5.5 15.9	5.73 1.43%
12 Scr	ew knob onto cam	2 0 1	1 2. Part Sectred Immediately 1	. Easy Access	4. Screw	2. Easy Align w Pesis	1. One Hand	1. UNUSED	1. Easy 4.	1 Direction	1. Any Direction	4. T <=2mm, S >6n	nm 360	0 :	2 2.06	8 20.6	7.45 1.86%
13 Plac	ce springs in block	4 4 1	2 1. Part Added but Not Secure 1	. Easy Access	1. Place	1. Easy Align, No Lesi	1. One Hand	1. UNUSED	2. Difficult 2.	2 Directions	1. Any Direction	5. T <=2mm, S <=6	im 180	0 0	1 2.98	1.5 19.4	7.01 1.75%
14 Plac 15 Slid	te block on sider	2 2 1	2 2 Part Secured Immediately 2	Medium Access	2. Holu 1. No Screw or I	 Easy Align, No Re Fasy Align w/ Resis 	One Hand	1. UNUSED	1. Easy 4.	1 Direction	4. I Direction	1 T >2mm, S >151	mr 360	0 0	4 1.95 2 1.5	5.5 15.9 1 75 188 1	577 1.45%
10 010	ie in cum ussembly	ĩ T	2 2. Full Poured minediately 2	. mediant recess	1. Ho ocien di	D.L. Luby / light in record		1. ONOOLD	1. Eusy 4.	Direction	1. 7 dry Direction	1. 1 2 2 1111, 0 2 101				1.5 10.0	
PCB 1 Inst	tall grommets into P	5 0 1	1 2. Par Secured Immediately 2	. Medium Access	1. No Screw or	C2. Easy Align w/ Resis	2. 0 hand +	.3. Standard	1. Easy 2.	. 2 Directions	1. Any Direction	1. T >0.25mm	180	0	1 7	7.5 74.3	26.8 6.69%
2 Pos	sition ground cable	1 1 1	1 1. Pr I Added but Not Secure 1	. Easy Access	2. Hold	3. Hard Align, No Resi	1. One Hand	1. UNUSED	1. Easy 2.	2 Directions	4. 1 Direction	2. T >2mm, S =6~	15 180	360	3 2.1	6.5 9.13	3.3 0.82%
2.1 Pos	sition washer	1 0 1	1 1. Firt Added but Not Secure 1	. Easy Access	2. Hold	1. Easy Align, No Resi	1. One Fond	1. UNUSED	1. Easy 2.	2 Directions	1. Any Direction	5. T <=2mm, S <=6	im 180	0	1 2.18	5.5 8.23	2.97 0.74%
3 504	ew in ground cable	1 0 1	1 2. Part Secured Immediately 1	. Easy Access	4. Screw	2. Easy Align W Resis	T. One Hal	T. UNUSED	1. Easy 4.	. T Direction	1. Any Direction	4. 1 <=2mm, 5 >6n	nm 360	0.	2 2.06	0 10.0 .	0.02 0.95%
Sub-Asm 1 Pos	sition base	1 1 1	1 Sepearate Operation 3	. Non-Fastening	1. Manipulation	1. UNUSED	1. One Hand	UNUSED	1. Easy 4.	1 Direction	1. Any Direction	1. T >2mm, S >15	mr 360	0	2 1.5	9 10.9	3.93 0.98%
2 Plac 2.1 Orio	ce neater assemblie	2 0 1	3 Separate Operation 3	. Easy Access	1. Place 1. Manipulation	 Hard Align, No Resi: 1 UNUSED 	1. One Hand	1 NUSED	1. Easy 4.	Any Direction	3. 4 Directions	1. 1 >2mm, S >151	15 0	360	2 1.5	2.5 8.38	3.02 0.75% 7.06 1.00%
3 Plac	ce rear bearing cove	2 2 1	1. Part Added but Not Secure 1	. Easy Access	1. Place	1. Easy Align, No Resi	1. One Hand	1. UN GED	1. Easy 4.	1 Direction	4. 1 Direction	2. T >2mm, S =6~	15 360	360	4 2.25	1.5 8.06	2.91 0.73%
4 Scr	rew center blocks &	6 0 1	1 2. Part Secured Immediately 1	. Easy Access	4. Screw	2. Easy Align w/ Resis	1. One Hand	1. UNUS TD	1. Easy 4.	. 1 Direction	1. Any Direction	2. T >2mm, S =6~	15 360	0	2 1.8	8 59.3	21.4 5.34%
5 Plac	ce front bearing cove	2 2 1	1 1. Part Added but Not Secure 1	. Easy Access	1. Place	1. Easy Align, No Resi	1. One Hand	1. UNUSE	1. Easy 4.	1 Direction	4. 1 Direction	2. T >2mm, S =6~	15 360	360	4 2.25	1.5 8.06	2.91 0.73%
6 Scr	rew front bearing cov	4 0 1	1 2. Part Secured Immediately 1	Easy Access	4. Screw	2. Easy Align w/ Resis	1. One Hand	1. UNUSED	1. Easy 4.	1 Direction	1. Any Direction	2. T >2mm, S =6~	15 360	0 :	2 1.8	8 39.7	14.3 3.57%
7 Clip	o spring leads	4 0	1 5. Sepearate Operation 5	. Non-mastening	2. Other	T. UNUSED	2. Une hand +	.3. Standard	Easy 1.	. Any Direction	1 T. Any Direction	1. 1 20.25mm	U	U	L /	12 11.0	20.1 7.01%
	•																
) Part Added?	?	A	ccess/Fastening) Operat	ion	Aliç	gn/Inse	rt									
1. Part Added	d but Not S	Secure	Easy Access	1. Place	e	1. E	Easv Ali	an. Nc									
t Added but Not S	Secured		Non-Mech East	en 4 Chen	nical Pro	ocess 1 L	INUSE	5									
t Secured Immedia	ately		Eacy Accord			2 1.0		an No									
pearate Operation		ł	Easy Access	i. Place	8	э. r	hard All	gn, No									
3 Sepearate	Operation	n	Non-Eastening	1 Mani	pulation	11	JNUSE	2									
o. ocpearate	operation			1. Wearin	paration												
				- · · · · ·		~ ~ ~ ~	- A I'										
					-			_		-							

Assembly Time

Estimator for Large

Assemblies

Insertion Process Tree	·	
Part Added?	Access/Fastening Opera	ation Align/Insert
 Part Added but Not Secure Sepearate Operation Part Added but Not Secure Sepearate Operation Part Secured Immediately 	1. Easy Access 1. Pla 2. Non-Mech. Fasten 4. Che 1. Easy Acces 1. No Mat'l Req 3. Non-Fasten 2. Soldering 3. Weld/Braze 1. Easy Acces 4. Chemical Braze	ce 1. Easy Align, No emical Process ↓ UNUSED uired Hard Align, No UNUSED Easy Align w/ I
1. Part Added but Not Secure	1. Easy Access 1. Pla	ce 1. Easy Align, No

INT.ACO / Confidential

Case 2 – Model Development

- Original assembly contains 1709 parts, 7.6% DFA index
- 60% of time in ~25% of parts
- Largest single contributor is 8% of total (24 min)

Case 2 – Model Correlation

Model correlation with client assembly times:

- +/- 20% on process level common (up to 200%)
- +/- 5% on sub-assembly level
- +/- 2% on top assembly level
- Higher assemblies have averaging effect

	Actual	Model	
Step	Time	Time	Notes
BLOWERS:			
apply epoxy to flap base	15	13.5	without epoxy mixing time
position flap base onto fan	13	15	Clean up operation not in model
backfill gaps	17	26	
place PSA onto jig	20	26	
press fan onto PSA	20	29	
orient blower weldment	5	10.8	
install first blower	24	4.4	Include PSA mask removal?
re-orient blower weldment	5	12.7	
install second blower	21	4.4	
route cables	16	23	
route ribbon cables	17	24	
place blower assembly into duct cover	12	12.7	
screw assembly	93	55	manual driver, check cables
flip assembly over	3	13	
screw assembly	31	23	
check cable movement	7	22	
snap on blower flaps	15	14	
check blower flap movement	4	11	
Totals	338	339.5	

Case 2 – Model Application

ROI Rollup

Selected		Est. Time		Est. Assembly	Est.	Part Cost					
Option	Description	Savings (s)	% Total	Cost Savings	Tooling	Est. NRE	Delta	Est. ROI	Risk	Part cost notes	
1.1	Assembly fixture, epoxy through holes	840	4.2%	GOOD	\$4,000	\$5,000	\$0.00	OK	Low		
1.2	Single bumper, simplified attachment	1860	9.3%	BETTER	\$8,000	\$10,000	\$0.00	BEST	Low		
1.3	New slider with integrated springs	2060	10.3%	BEST	\$20,000	\$20,000	\$3.00	GOOD	High	+integrated springs	
2.c	Integrate cables into flex heaters	520	2.61%	GOOD	\$8,000	\$5,000	\$10.00	VERY BAD	Low	+flex heater -separate cable	
2.1	PSA heater to bumper	740	3.71%	GOOD	\$2,000	\$10,000	-\$1.00	BEST	Low	-screws&shoulder nuts	
2.2	Modify heater with snap-in standoffs	1000	5.01%	GOOD	\$10,000	\$15,000	\$0.00	GOOD	Med	-screws&shoulder nuts +heater snap	
2.3	Key slots in heater for positioning	250	1.25%	BEST	\$3,000	\$3,000	\$0.00	OK	Low		
3.s	Modify spring to cut length	780	3.91%	GOOD	\$1,000	\$0	\$0.00	BEST	Low		
3.1	Snap-in cam assembly covers	1110	5.6%	BEST	\$30,000	\$10,000	\$0.00	OK	Med	-screws +slot plastics	
3.2	Latch/Cam design changes	430	2.2%	OK	\$20,000	\$15,000	-\$1.00	BAD	Med	-latch & springs	
3.3	Assembly fixture, base modification	510	2.6%	OK	\$10,000	\$15,000	\$0.00	BAD	Low	-screws&springs +slot plastics	
pm	One-way snap to retain pusher	485	2.4%	GOOD	\$10,000	\$5,000	\$0.00	OK	Low	-screws +pusher plastics	
4.1	Isolation washers, snap-on wireform	1530	7.7%	BEST	\$10,000	\$10,000	\$0.00	BEST	Low	-screws&washers + wireframe	
4.2	Slot board layout changes	810	4.1%	GOOD	\$10,000	\$5,000	-\$0.20	GOOD	Low	-grounding cable	
5.1	Customize blowers	520	2.6%	BEST	\$8,000	\$5,000	\$0.00	BEST	Low		
5.2	Symmetric blower floap	425	2.1%	OK	\$5,000	\$10,000	\$0.00	GOOD	Low		
6.1	PSA strips	95	0.5%	OK	\$0	\$2,000	-\$0.50	BEST	Low	-diecut psa	
6.2	Snap-in blowers to weldment	245	1.2%	GOOD	\$5,000	\$3,000	\$0.00	GOOD	Low		
6.3	Wireform snap over blowers	245	1.2%	GOOD	\$0	\$5,000	\$0.50	OK	Med	+wireform	
6.c	Cable routing clips in weldment	105	0.5%	OK	\$5,000	\$5,000	\$0.00	BAD	Low		
7.1	Snap-on covers to blowers	560	2.8%	GOOD	\$5,000	\$10,000	\$0.00	GOOD	Low		
7.2	Custom install of blowers into weldment	1220	6.1%	BEST	\$30,000	\$15,000	-\$1.00	BEST	Med	-duplicate blower shroud	
8	Frame tool change	900	4.5%	GREAT	\$20,000	\$0	\$0.00	GREAT	Low		
cr.1	Change PCBA layout & mounting	972	4.9%	GOOD	\$20,000	\$10,000	\$1.00	OK	Low	+sheetmetal hinged frame	
cr.2	Route slot cables between blowers	831	4.2%	GOOD	\$20,000	\$10,000	\$0.50	OK	Low	+overmold	
cr.3	Route slot cables out side of pack	1155	5.8%	BEST	\$30,000	\$15,000	\$0.20	BEST	Med	+slot cable retainer	
si.1	Assembly fixture	126	0.6%	OK	\$0	\$2,000	\$0.00	OK	Low		
si.2	Slot divider tray modifications	1014	5.1%	GOOD	\$10,000	\$10,000	\$0.00	BEST	Low	-screws, +wireframe	
si.3	Sheetmetal wall adapter	1246	6.2%	BEST	\$40,000	\$20,000	\$1.00	VERY BAD	High	+sheetmetal adapter	

Representative section of options menu

Case 2 – Results

Recommended Options

Selected		Est. Time		Est. Assembly	Est.	Part Cost					
Option	Description	Savings (s)	% Total	Cost Savings	Tooling	Est. NRE	Delta	Est. ROI	Risk	Part cost notes	
1.2	Single bumper, simplified attachment	1860	9.3%		\$8,000	\$10,000	\$0.00		Low		
2.1	PSA heater to bumper	740	3.71%		\$2,000	\$10,000	-\$1.00		Low	-screws&shoulder nuts	
3.s	Modify spring to cut length	780	3.91%		\$1,000	\$0	\$0.00		Low		
3.1	Snap-in cam assembly covers	1110	5.6%		\$30,000	\$10,000	\$0.00		Med	-screws +slot plastics	
pm	One-way snap to retain pusher	485	2.4%		\$10,000	\$5,000	\$0.00		Low	-screws +pusher plastics	
4.1	Isolation washers, snap-on wireform	1530	7.7%		\$10,000	\$10,000	\$0.00		Low	-screws&washers + wireframe	
5.1	Customize blowers	520	2.6%		\$8,000	\$5,000	\$0.00		Low		
6.1	PSA strips	95	0.5%		\$0	\$2,000	-\$0.50		Low	-diecut psa	
7.1	Snap-on covers to blowers	560	2.8%		\$5,000	\$10,000	\$0.00		Low		
7.2	Custom install of blowers into weldment	1220	6.1%		\$30,000	\$15,000	-\$1.00		Med	-duplicate blower shroud	
8	Frame tool change	900	4.5%		\$20,000	\$0	\$0.00		Low		
cr.1	Change PCBA layout & mounting	972	4.9%		\$20,000	\$10,000	\$1.00		Low	+sheetmetal hinged frame	
cr.3	Route slot cables out side of pack	1155	5.8%		\$30,000	\$15,000	\$0.20		Med	+slot cable retainer	
si.2	Slot divider tray modifications	1014	5.1%		\$10,000	\$10,000	\$0.00		Low	-screws, +wireframe	
	Totals	12941.00			184000.00	112000.00	-1.30				
	3.59472222 hours										

Client-selected mitigation plans:

- Prioritized development risk and ROI
- Cost savings > \$ 500 K; ROI > \$300 K
- Part Count: 1709 → 814
- DFA index: 7.6% → 14.9%
- Assembly time: 6.5 hrs \rightarrow 2.9 hrs

If assembly time is prioritized:

- Time savings increase to 4 hrs
- ROI decreases to < \$150 K

Conclusions

- Good first-order estimate of assembly cost early in design process
- Provides a way to make design tradeoffs & optimize assembly time
- Clients use tool for design metric, quote verification, removes "black box"
- Use DFMA early & often in design to achieve maximum ROI
- But, better late than never

	Case 1 - Optical Assembly	Case 2 - Test Assembly
Initial Assembly Time (hrs)	0.92	6.5
Optimized Assembly Time (hrs)	0.43	3.6
Assembly Time Reduction	29.4 min	2.9 hrs
Assembly Cost Savings (per unit)	~\$5	~\$50
COGS Cost Savings	\$40 (35%)	N/A
Build Quantity	12,000/yr	14,000/yr
Total Client ROI	~500K	>\$300K
Model Correlation	10-14%	2-5%

Hand-Calculated Savings:

Case studies in the application of a simplified Boothroyd-Dewhurst Methodology in the design and manufacture of complex assemblies

International Forum on Design for Manufacture and Assembly

Providence, RI, 6/14/2013

Silicon Valley / Boston / China