

Designing Around Orthogonal Direct

06/04/2014

Silicon Valley / Texas / Boston / China

Acorn Product Development

- Silicon Valley, Boston, Texas, and China
 - 40 Employees
- Comprehensive product engineering for leading companies globally.
 - Server and Chassis Design
 - Consumer Products
 - Robotics
 - Medical Devices

PG# 2

Acorn Product Development

- Areas of expertise:
 - Turnkey product development,
 - Engineering analysis,
 - Materials cost analysis,
 - and DFMA
- Robust designs that are fast to market

Overview

- Case study of high speed router product
- Design Goals
 - 4Sigma connector mating and gathering
 - Meet High Speed Signal requirements
 - Meet Thermal requirements
 - Low cost system
 - Thousands of units produced

• Topics of Discussion

acorn

- Design for Assembly
- Design driven by tolerance analysis
- Design for Manufacturability and cost

PG# 4

Case Study – High Speed Switch Design Details • Cloud Computing • Software Defined Networking, SDN

- Development Operations, DevOps
- Potential Customers
 - Facebook, Google, etc.

Case Study – High Speed Switch

- Highly modular chassis
- Thermal Performance
 - Fully loaded system up to 25kW
 - 55C Inlet Temperature
- Module alignment and communication regardless of chassis configuration

• High speed connections, 100Gbps

 Molex Orthogonal Direct connector architecture

Molex Orthogonal Direct Architecture

- Module connectivity without backplane
 - Less connections allow for higher signal speeds
 - Improved Airflow due to lack of backplane
 - Saved highly complex Mid-plane board
 - Halved connector count
 - Introduced challenges in alignment and connector mating

acorn

Molex Orthogonal Direct Architecture

- Module connectivity without backplane
 - Less connections allow for higher signal speeds
 - Improved Airflow due to lack of backplane
 - Saved highly complex Mid-plane board
 - Halved connector count
 - Introduced challenges in alignment and connector mating

Module Overview

Five major module types

- Line Card [LC] x 16
- Fabric Module [FM] x 6
- Supervisor x 2
- SC x 2
 PSU x 10

Populated with 16 connectors to talk to 16 Line Cards

Line Card [LC]

Populated with 6 connectors to talk to 6 Fabrics Modules

Chassis Design – Mechanical Challenges

- Module to Module connectivity
 - Connector Lead-in without binding
 - Simultaneous alignment of up to 16 modules
 - Never been done at this scale
- Structural Integrity
 - Structural analysis to ensure chassis could with stand module insertion loads
 - Force of FM into 16 LC modules ~250 lbf
- Thermal Performance
 - Densely packed electronics
- Self Fixturing Design

PG# 10

Self Fixture vs. Assembly Fixture

- Major chassis components designed to be self aligning (self fixture)
 - Ease of assembly, no extra processes
- Increased design effort
 - Definition of assembly procedure
 - Specific direction of assembly
- Original chassis assembly required no external fixtures
 - Current chassis requires one fixture

Self Fixture vs. Assembly Fixture

• Self Aligning features:

Module Connectivity

- Module Wipe
 - Mate ensures pin contact?
- Module Gathering/ Binding
 - Connector misalignment within Max Connector Offset spec
 - Are all connectors able to mate fully without interference

Module Connectivity - Wipe

• Design Limits

- Shortest OD pin length of 1.42MM
 - Minimize length of pin
 - Reflections off tip of pin will create reflections interfering with signal
- Entire 1.42MM pin length not available
 - Connectors bottom out
 - Over insertion creates excessive loading on boards

acorn

• Ejectors might not fully close

Tolerance Analysis

- Determine if assembly can meet functional quality goal
 - Tolerance values derived from supplier statistical data
- Statistical Tolerance Analysis
 - Similar to RSS Analysis
 - Accounts for process capability

RSS Equation

$$T_{Total} = \sqrt{(T_1^2 + T_1^2 + \dots + T_1^2)}$$

Tolerance Analysis – Sigma Values

- Also known as Z Value
- Percentage of population that is within or out of spec

Tolerance Analysis – Where Used

- Connector Mating
- Connector Alignment
- Bus Bar Mating

- Module to Module Gap Definition
- EMI Gasket Compression
- Ejector Geometry

Tolerance Loop – LC to FM Wipe

Element Name
A1 - Molex Ref Edge to Pin 1
A2 - Molex Pin to PCB - Press Fit
B1 - Conn. Row A Pin PCB Hole to Ref Hole
B2 - PCB Ref hole to Ejector PCB Hole
C1 - PCB Hole Radius
C2 - Clearance, Pressed Pin Radius to PCB
C3 - Pressed Pin Radius
D - Die-Cast Elector Base, Boss to Bore
E1 - Die-Cast Bore Radius
E2 - Pin Clearance, Radial
E3 - Pin Radius
F - Die-Cast feature to feature
G - Slop, Ejector Lock
H - Post on Machining feature-to-hole
11 - PEM Concentricity Tolerance
12 - TPS Pem Pin Radius
I3- Pin to SM Clearance
14 - Sheetmetal hole radius
L Side Panel Like Punch to Punch
L1 - Hole Radius SM
1.2. Pin to SM Hole Clearance
1.3 - Dowel Pin Radius
1.5 - Gan. Pin to CNC hole in elector
L6 - Hole Radius, CNC
M - Machined Feature to Feature
Gan / Interference: Fiect / Chassis
N - SM Feature to Feature
O - Elector to thumbscrew face (cut to hend)
P - Tray thumbscrew face to pivot (bend to cut)
r - rray thanbacrow race to prot (bolid to cat)
01 - Rivet Concentricity Tolerance
02 Divot radiue
03 SM Hole Dedine
04 Can radial hale to nivet
04 - Gap, radial, nole to pivot
R - Smithole to hole, utilike realures
S1 - PEM Concentricity Tolerance
52 - TP5 Mill Radius
So- Gap, Pin to PCB clearance
54 - PUB note radius
11 - Conn. Row A Pin PCB Hole to Ret Hole
12 - PCB Ret hole to Ejector PCB Hole
13 - Molex Pin to PCB - Press Fit
U - FM-PCB Pin A Location to SC Conn Rear

Tolerance Loop - Wipe

Tolerance Loop - Wipe

Tolerance Loop - Wipe

- LC to FM tolerance loop comprised of numerous elements:
 - Connector body tolerance
 - Connector press fit misalignment
 - PCB routing tolerance
 - Manufacturing tolerance
 - Gaps within chassis
- Goal: Minimize major contributors in tolerance loop

Tolerance Loop – LC Ejector Bar

- Sheetmetal construction
- Critical wipe dimension between Surface A and Centerline B
 - Passes through 3 sheet metal bends
 - Pilot hole for Guide Pin B post machined after bending using surface A as datum
- Achieved 4Sigma for OD connector wipe connectivity

Sheetmetal Bend to Bend X.XX ± 0.25MM

acorn

Module Alignment - Gathering

- Module Gathering
 - Can we generate enough rough alignment that the connectors will lead in?
 - Chamfered edges of connector contacts to guide connectors into alignment

Module Alignment

- Module Binding
 - Are all connectors able to mate fully without interference?
 - Prevents module insertion
 - Or increased insertion resistance

Connectors Aligned

Tolerance Loop - Alignment

• Rough alignment for connector lead-in

- OD connectors OTS with Guide Pin/ Shroud
 - Blocked airflow
 - Required population across all connectors
 - Extra cost

Brainstorm - Module Alignment

- Brainstorms held for module alignment
 - Suppliers, clients, and engineers directly collaborate on ideas and potential solutions to problems
 - Shotgun approach to concept generation
 - Analysis and development follows to determine which ideas are viable

Note: Not actual representation of Acorn Brainstorm

sacorn

PG# 27

Board to Board Alignment Concept

- Board to Board alignment scheme
 - Pre-alignment for boards rather than individual shrouds
 - Boards will align to intermediary alignment feature
 - No guide pins on connectors
- Intermediary alignment component required
 - Center Structure

Board to Board Alignment Concept

- Board to Board alignment scheme
 - Pre-alignment for boards rather than individual shrouds
 - Boards will align to intermediary alignment feature
 - No guide pins on connectors
- Intermediary alignment component requirement
 - Center Structure

Center Structure - Construction

- Two primary concepts
 - Sheetmetal and extrusion assembly
 - Die Cast structure
- Originally pursued sheetmetal/ extrusion concept
 - Worked for alignment
 - Difficult to assemble and align pieces
 - Didn't provide enough structure

Sheetmetal/ Extrusion Center Structure

Center Structure - Construction

- Die Cast structure
 - Non-Critical tolerance at NADCA (North American Die Cast Association) standard
 - Crucial alignment features created using secondary machining operation
 - Machining features designed for single setup from one side
- Machined Construction temporarily implemented for initial runs and prototype
 - Long lead time for die cast tooling
 - Expensive tooling cost

Die Cast Center Structure

Center Structure – Manufacturing Challenges

acorn

- Open lattice structure
 - Warping due to casting
 - Difficulty defining machining datum
 - Flexible structure deformed during machining
 - Reduced accuracy of machining process
- Worked with suppliers to determine what tolerances were achievable

PG# 32

Center Structure – Manufacturing Process

- Center structure location in XYZ defined by locating tabs on sides of component
 - Initial machining pass to create rear surface of tabs
- Part clamped using 3 surfaces to create machining datum
- Initially wanted to machine and inspect in unclamped state
 - Excessive process complexity and cost

acorn

Assembly tolerances monitored

PG# 33

Center Structure – Manufacturing Challenges

- Tolerance Analysis revisited
 - Geometry updated based on new data
- Results
 - Able to maintain 4Sigma design
 - Comparable tolerances and structure to CNC design
 - ~90% cost reduction from CNC component

Concluding Thoughts

What was achieved

- 4Sigma Design for connector mating and gathering
- High Speed Signal requirements met
- Thermal requirements met
- Cost optimized system

Keys to success

- Heavy upfront work to understand problem and create optimal solution
- Close relationship with clients and suppliers
 - Optimize cost, manufacturability, performance

Questions/ Contacts

For additional Questions and Inquiries:

Engineering

Ken Haven CEO khaven@acornpd.com

Michael Zhang Mechanical Engineer mzhang@acornpd.com

Sales

<u>Silicon Valley</u> **Mike Dimartino** mdimartino@acornpd.com

Boston Barry Braunstein bbraunstein@acornpd.com

Designing Around Orthogonal Direct

06/04/2014

Silicon Valley / Texas / Boston / China

