

🔰 Dynisco

Improvement

Continuous

Tying it all together: Lean, TCO, DFMA, VAVE, Supply Chain & Operations

June 3, 2015

John Biagioni President

Introductions

John Biagioni – President, Dynisco

- BA Economics (URI), MS Operations and Information Technology (WPI)
- Started as a machinist trainee, currently a President, been everything in between...
- Hold (3) patents on sensing design
- Been Doing DFMA since URI in the early 90's by hand...

Matt Miles – DFMA and VAVE Engineering Manager, Dynisco

- BS Mechanical Engineering Technology (RIT)
- 16+ in Engineering from supplier quality, to CI lead to R&D to value engineer
- Hold (3) patents on sensing design
- Been Doing DFMA for 9 years, still waiting for someone to listen....

Introductions

John Biagioni – President, Dynisco

- BA Economics (URI), MS Operations and Information Technology (WPI)
- Started as a machinist trainee, currently a President, been everything in between...
- Hold (3) patents on sensing design
- Been Doing DFMA since URI in the early 90's by hand...

Matt Miles – DFMA and VAVE Engineering Manager, Dynisco

- BS Mechanical Engineering Technology (RIT)
- 16+ in Engineering from supplier quality, to CI lead to R&D to value engineer
- Hold (3) patents on sensing design
- Certified Associate Value Specialist (AVS VAVE)

Introductions

Kevin Dailida – Sr. Director, Supply Chain and Operations, Dynisco

- BS Aerospace Engineering (Hofstra), MS Mfg Engineering and Management (WPI)
- 22+ years of Engineering and Mfg experience covering NPD, process engineering, Lean manufacturing and supply chain between...
- Responsible for product procurement, manufacturing and distribution covering the US, Europe and Asia
- Late bloomer to DFMA. Once of these days, he'll actually get it...

Agenda

"Take Aways" from Presentations and Discussions

- Should Costs (Clean Sheeting)
- Competitive Benchmarking and VOC
- DFMA Sooner vs. Later
- Dynisco's Journey
- The Technical
 - тсо
 - Supply Chain Strategy
 - Tying it All Together
- Results

What is "Clean Sheeting" or "Should Costing"?

- A systematic process of breaking down the cost components of a product including raw material, transportation, direct labor, indirect labor, scrap, productivity enhancing technologies, overhead, energy, regulations, other relevant components, etc.
- Building these components into a simple, quantitative model that can be used to understand the magnitude of costs and how they can be reduced
- That information can be used to better negotiate or leverage your spend with suppliers
- Clean Sheet is a transparent collaboration of data sharing between suppliers to customer
- Should Cost is using estimates on the data to come to a "Should Cost" build up price – Cost transparency does not exist

BDI captures should costs. Populating user definable material libraries and templates creates a TCO tool.

Clean Sheet Example

			check greens
		Total Cost	\$35.10
Input Fields		Calculated Costs	
ltem	Assumption	ltem	Calculation
<i>Material handling labor</i> Desired max WiP level (hours) Safety stock level (hours) Number of delivery points Time required per delivery (seconds)	2.20 hours .20 hours 1 120 seconds	Total material handling work content Number of material handlers required	1 seconds/unit 0.02
<i>Shipping labor</i> Time between truck arrivals Number of load cycles per truck Time required per loading cycle (seconds)	8.0 hours 48 120 seconds	Total shipping work content Number of shipping laborers required	14 seconds/unit 0.22
<i>Receiving labor</i> Time between truck departures Number of unload cycles per truck Time required per unloading cycle (seconds)	8.0 hours 48 120 seconds	Total receiving work content Number of receiving laborers required	14 seconds/unit 0.22
Quality control labor Time between QC checks Number of stations requiring QC checks Time required per check (seconds)	1.0 hours 2 180 seconds	Total QC check work content Number of QC personnel required	7 seconds/unit 0.11
MRO costs Maintenance personnel/shift	1.0		
<u>Scrap costs</u> Defective material rate (%) First-time yield rate Rework time required per defective unit	0.05% 99.00% 0.10 hours	Defective materials cost per month Defective materials cost per year Number of reworkers required per shift	\$421/month \$5,054 0.05
Materials cost		Total material/component costs	\$25.39
<i>Fixed asset assumptions</i> Plant floor space lease rate per year Floor space required Dunnage Useful life for equipment and dunnage Total tooling costs Useful life for equipment tooling	\$7.00 25,000 sq ft \$200,000 7 years \$50,000 7.0 years	Total equipment costs Equipment expense per year Dunnage expense per year Tooling expense per year	\$825,000 \$117,857 \$28,571 \$7,143

Dynisco

fill pinks

Competitive Benchmarking and VOC DFMA – Sooner vs. Later

- Competitive Benchmarking and VOC
 - VOC is NOT only talking to your own customers. (Your market vs. Available Market)
 - VOC must be a group exercise and include competitive products as a representation of value that customers find in designs other than your own.
- DFMA Sooner vs. Later

What does 62 Parts versus 1 Part mean...

- Supply Base
- Capital Investment
- Labor
- Support Costs/Overheads...

Think beyond the mechanics of the tool and apply the thought process to a broader business perspective

Dynisco's Journey – Self Funded and Actualized

- Lean applied to pilot plants driving incremental savings opportunities
 - Lean expanded to multi-site funding CI roles and the creation of a DFMA hire (Mr. Miles...)
- DFM introduced to Dynisco as a rapid method of effecting a step function drop in pricing moving from commercial negotiators to should cost practitioners
 - DFM focused by pareto on the largest runners with the least amount of open inventory driving quickest ROI
 - DFM successes build driving the need for more resources to work on conversion of the opportunities identified by Matt
- CI rebranded VAVE team and now focused on doing it right the first time with systematic requirement for engagement in the product development process

Lean to DFM to DFMA to VAVE in Product Development Dynisco to VMAS to ES&C and beyond...(Roper)

Your Low-Cost Country Sourcing Options? "Off-shoring, Near-shoring, Re-Shoring..."

- Break down the cost into Piece Part, Landed Cost and Total Cost of Ownership
- Understand the Total Cost of Ownership
- Identify the Risks of moving to an LCC
- Calculate the One Time Costs and the Recurring Costs
- Understand the True Cost "clean sheet" / "should cost" your product.

Breaking Down The Cost

- Piece Part Cost?
 - Labor + Overhead + Materials
- Total Landed Cost?
 - Commonly, the total cost of a landed shipment—including purchase price, freight, insurance, and other costs up to the port of destination. In some instances, it may also include the customs duties and other taxes levied on the shipment. www.businessdictionary.com
- Total Cost of Ownership?
 - Reflects not only the cost of purchase but all aspects in the further use and maintenance of the equipment, device, or system considered.

Our Model for TCO

Part Cost (h) Total Landed Cost (h) Freight, insurance, and Duties Potentially a fuel surcharge

Piece

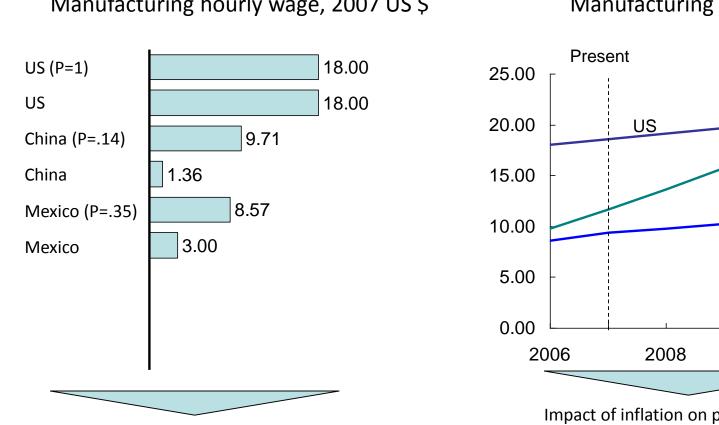
Total Cost of Ownership (s) Overheads Cost of Poor Quality Non-BOM Items (*Packaging Cost*) Inventory carrying costs of extended supply chain Reverse Logistics (*service, warranty, disposal*) Remote Supplier Management One time costs Risk Factors

Risk Factors

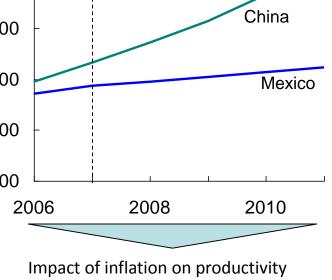
- Inflation
 - Labor
 - •Energy/Fuel
- Business Continuity
 - •Health/Pandemic
 - Infrastructure
- •Quality (losing the recipe)
- •Customer Perception/Acceptance
- Currency
- •IP Transfer
- People
 - •Cultural Differences Guanxi
 - •Language Barriers
 - •Skill/Experience
 - Turnover
- Financial & Legal Environment
- •Service Level Flexibility
- •Trust Corruption & Business Practices

Risk Factors – Calculating Risk

Risk Factors	Weight	<mark>%</mark> Probability	Risk %					
Inflation (general)	4	100%	4.0%					
Labor	12	20%	2.4%					
Energy/Fuel	11	75%	8.3%					
Business Continuity (general)	3	50%	1.5%					
Health/Pandemic	13	100%	13.0%					
Infrastructure	2	80%	1.6%					
Quality (losing the recipe)	17	100%	17.0%					
Customer Perception/Acceptance	1	25%	0.3%					
Currency	8	100%	8.0%					
IP Transfer	15	100%	15.0%					
People (general)	5	75%	3.8%					
Cultural Differences - Guanxi	6	75%	4.5%					
Language Barriers	7	95%	6.7%					
Skill/Experience	10	75%	7.5%					
Financial & Legal Environment	14	75%	10.5%					
Service Level - Flexibility	16	100%	16.0%					
Trust – Corruption & Business Practices	9	75%	6.8%					
Overall Risk Factor								


LCC Gains at Risk Over Time – Labor Inflation **Dynisco**

s (Microsoft Exc	el -	wageschina.xls									FF
			rt Format <u>T</u> ools <u>D</u> ata	a Win	dow	Help				Type a	a question for help	▼ - 8
							0 5	ALZI	10a 🛋 1000/			
-			占 🔒 🧉 💪 🖑 🖏					Z ↓ Ā ↓	100% ·	B 2	Ů <mark>=</mark> ≡ <u>∽</u> •	· 🐴 •
2	1 🖆 🖄 🖾 🏷	3	🏷 🍠 🔩 😥 💖 Repl	y with <u>c</u>	hang	es E <u>n</u> d Review	···· 🚽					
	AG27 🗸	fx.										
	A	В	С	D	E	F AG		AH	AI	AJ	AK	AL
	The Econor	mie	t Intelligence Ur	hit								
_												
2	CountryData - J	Anni	ual Time Series									
}	Country/Region		Series Title		Curr	1 21	006	2007	2008	2009	2010	
	Country/Region			4				2007	2000	2009	2010	
5			Fiscal and mone	etary	ind	14						
6			Inflation and wages									<u> </u>
	China		Consumer prices (% char				.40	2.50		2.80		
	China	CN	Consumer price index (av)	LCPI	<u> </u>	107		110.70				
	China		Consumer price index (19			109		112.00		118.20		
	China		Consumer prices (% char				.40	2.50		3.00		
	China		Producer prices (% chang		<u> </u>		.90	3.50		2.90		
2	China		Producer price index (av)			153		158.80		168.30		
	China		Producer price index (199		<u> </u>	108		112.40		119.10		
	China		Average nominal wage inc			340		391.10		508.30		
5	China		Average nominal wages (9	DAVVA	<u> </u>		.00	15.00		14.00		
	China		Average real wage index (311		349.20		430.00		
	China		Average real wages (% ch		۲		.40	12.20		10.90		
	China		Unit labour cost index (US			164		182.00		211.30		
	China		Unit labour costs (% char	LCHD	1000		.90	10.90		7.80		\mathbb{H}
<u>20</u> 21	China	CN	Labour costs per hour	LCHD	08\$	1	.36	1.63	1.90	2.20	2.56	
	Laward	-				China						4 L
	Legend Actuals in Black					\$9.71	\$11.64		\$13.57	\$15.71	\$18.29	\$21.21
_	Estimates in Blue					USA	\$11.04		\$13.37	\$13.71	\$10.2	\$Z1.21
	Forecasts in Green					\$18.00	\$18.54		\$19.10	\$19.67	\$20.26	\$20.87
:5 !6	r orecasis in Green					φ10.00	\$10.34		φ13.10	\$13.07	\$20.20	\$20.01
	CountryData Notes										7-	$\land \land \land$
	Country/Region		Forecast Date			-	—i		$V_{-} \Pi_{-} \Omega_{-}$			$\neg \lor \land \neg$
29	China China	1	1/25/2007		1			5	777777777777	מארה ארון ו-אייקארים		· /
30									<i> _ </i>	5(5/4/(0///	1714	
_	Copyright © 2007. The	e Econ	omist Intelligence Unit.									
	✓ ► ► \ wageschi							<			1	>
								1	-		II	
eac	ay .										NUI	M


Labor Rate Comparison, Inflationary Trends and Impact of Productivity on Labor Rates

Manufacturing hourly wage, 2007 US \$

Manufacturing hourly wage US \$

Mexico's effective labor rate is lower versus China due to productivity

indexed wages highlight risks associated with savings derived from "low cost labor"

Year Over Year Decline of the buying power of the USD in LCG and the EU

	Riggit (MYR)		Yuan (CNY)		Peso (MXN)		Euro (EUR)	
2005	3.7886		8.2033		10.9048		0.8045	
2006	3.6783	3.00%	7.9819	2.77%	10.9155	-0.10%	0.7970	0.94%
2007	3.4471	6.71%	7.6172	4.79%	10.9366	-0.19%	0.7308	9.06%
2008	3.2321	6.65%	7.0289	8.37%	10.5404	3.76%	0.6513	12.21%
		16.36%		15.93%		3.47%		22.21%

Update – The Euro has dropped 18.7% on average over the last five months versus the US dollar year over year (from 1.37 to 1.11)

Creating a Model

Total Cost of Ownership

The Elements

Factors

- Volume
- Lead Time
- Piece Part
 - Labor
 - Build Hours to complete the assembly
 - Labor rate
 - Material
- TLC (Total Landed Cost)
 - Transportation
- TCO (Total Cost of Ownership)
 - COPQ (Cost of Poor Quality)
 - Profit
 - Additional recurring costs
 - Inventory Carrying Costs
 - Risks
- Other Costs
 - One Time/Transition Cost
 - Idled resources / Assets (have you created an impaired asset?)

One Time Costs

- Documenting the process
- Separation / severance cost
- Inventory
 - Carrying cost increase as a lead time de-coupler
 - One time build up
- Cost of Poor Quality (initial yields)
- Cost in transplanting processes, equipment and infrastructure to new geographies
 - Capital Investments
 - Travel & Expenses for staff
 - Freight & duties
 - Productivity impact during transfer phase

Recurring Costs

- Change in harmonization codes
- Travel & Expense Support
- In Country Infrastructure Costs
- Extended Inventory Pipeline (Inventory as de-coupler)
 - Have you localized?
 - Customer within same region the build?

Worksheet

LITER								
IIEM	FACTOR	Current	LCC 1	LCC 2	Definition			
1	Yearly Volume				The Yearly Sold Quantity			
2	Lead Time (wks)				Lead Time in Weeks			
	Piece Part							
3	Labor				Calculate: 4 x 5			
4	Rate				The Hourly Labor Rate			
5	Build Hours				Number of Hours To Build One Unit			
6	Material				Total Material Cost			
7	Total Piece Part				Calculate: 3 + 6			
	TLC							
8	Transportation (per unit)				Total Transportation Cost			
	ТСО							
9	COPQ %				Percentage of Labor, Materials and Transportation			
10	COPQ \$				Calculate: (7 + 8) x 9			
11	Profit %				Percentage of Labor, Materials, Transportation and COPQ			
12	Profit \$				Calculate: (7 + 8 + 10) x 11			
13	Additional Recurring Cost				Total additional cost including support, travel, etc.			
14	Additional Recurring Cost / Units				Calculate: 13 / 1			
15	Inventory Carrying Cost %				Percentage of additional inventory			
16	Inventory Carrying Cost (per unit) \$				Calculate: (((7 + 8 + 10 + 12) x 15) / 52 weeks) x 2			
17	Risk %				Percentage of risk			
18	Risk (per unit) \$				Calculate: (7 + 8 + 10 + 12 + 14 + 16) x 17			
19	TCO Unit Amount				Calculate: 7 + 8 + 10 + 12 + 14 + 16 + 18			
20	TCO Annualized Amount				Calculate: 1 x 19			
	Savings/Loss (units)							
21	Net savings/loss (per unit)				Calculate: 'Current' 19 - 'LCC 1' 19			
22	Net savings/loss (annualized)				Calculate: 'Current' 20 - 'LCC 1' 20			
	Additional Costs							
23	One Time Cost/Transition (per piece)				Calculate: 1 / 24			
	One Time Cost/Transition				One time transition and set up costs			
	Savings/Loss Overall							
25	Net savings/loss (annualized)				Calculate: 21 - 23			
	Net savings/loss (per unit)				Calculate: 22 - 24			
		•						

Example of a product that should stay in the USA Start up too high & customer base in USA

ITEM	FACTOR	Current		Mexico		China		
1	Yearly Volume	100000		100000		100000	The Yearly Sold Quantity	
2	Lead Time (wks)	0.2		2		11	Lead Time in Weeks	
	Piece Part							
3	Labor	\$ 54.00	\$	16.00	\$	12.00	Calculate: 4 x 5	
4	Rate	\$ 18.00	\$	4.00	\$	3.00	The Hourly Labor Rate	
5	Build Hours	3.00		4.00		4.00	Number of Hours To Build One Unit	
6	Material	\$ 150.00	\$	150.00	\$		Total Material Cost	
7	Total Piece Part	\$ 204.00	\$	166.00	\$	162.00	Calculate: 3 + 6	
	TLC							
8	Transportation (per unit)	\$-	\$	6.00	\$	18.00	Total Transportation Cost	
	TCO							
9	COPQ %	1%		10%		10%	Percentage of Labor, Materials and Transportation	
10	COPQ \$	\$ 2.04	\$	17.20	\$		Calculate: (7 + 8) x 9	
11	Profit %	10%		10%		10%	Percentage of Labor, Materials, Transportation and COPQ	
12	Profit \$	\$ 20.60					Calculate: (7 + 8 + 10) x 11	
13	Additional Recurring Cost	\$-	\$	8,000.00	\$		Total unique additional cost including support, travel, etc.	
14	Additional Recurring Cost / Units	\$-	\$	0.08	\$		Calculate: 13 / 1	
15	Inventory Carrying Cost %	10%		10%			Percentage of additional inventory	
16	Inventory Carrying Cost (per unit) \$	\$ 0.09	\$	0.80	\$		Calculate: (((7 + 8 + 10 + 12) x 15) / 52 weeks) x 2	
17	Risk %	1.0%		7.5%			Percentage of risk	
18	Risk (per unit) \$	\$ 2.27	\$	15.68	\$	16.72	Calculate: (7 + 8 + 10 + 12 + 14 + 16) x 17	
19	TCO Unit Amount	\$ 229.00	\$	224.68	\$	239.63	Calculate: 7 + 8 + 10 + 12 + 14 + 16 + 18	
20	TCO Annualized Amount	\$ 22,899,848.25	\$:	22,467,549.62	\$	23,962,535.58	Calculate: 1 x 19	
	Savings/Loss (units)							
	Net savings/loss (per unit)		\$	4.32			Calculate: 'Current' 19 - 'Mexico' 19	
22	Net savings/loss (annualized)		\$	432,298.63	\$	(1,062,687.33)	Calculate: 'Current' 20 - 'Mexico' 20	
	Additional Costs							
23	One Time Cost/Transition (per piece)		\$	10.00			Calculate: 1 / 24	
24	One Time Cost/Transition		\$	1,000,000.00	\$	1,000,000.00	One time transition and set up costs	
	Savings/Loss Overall							
	Net savings/loss (annualized)		\$	(5.68)			Calculate: 21 - 23	
26	Net savings/loss (per unit)		\$	(567,701.37)	\$	(2,062,687.33)	Calculate: 22 - 24	

Formulas

Labor	Calculate: Rate x Build Hours
Total Piece Part	Calculate: Labor + Material
Profit \$	Calculate: (Total Piece Part + Transportation (per unit) + COPQ \$) x Profit %
Additional Recurring Cost / Units	Calculate: Additional Recurring Cost / Yearly Volume
Inventory Carrying Cost (per unit) \$	Calculate: (((Total Piece Part + Transportation (per unit) + COPQ \$ + Profit \$) x Inventory Carrying Cost %) / 52 weeks) x Lead Time (wks)
Risk (per unit) \$	Calculate: (Total Piece Part + Transportation (per unit) + COPQ \$ + Profit \$ + Additional Recurring Cost / Units + Inventory Carrying Cost (per unit) \$) x Risk %
TCO Unit Amount	Calculate: Total Piece Part + Transportation (per unit) + COPQ \$ + Profit \$ + Additional Recurring Cost / Units + Inventory Carrying Cost (per unit) \$ + Risk (per unit) \$
TCO Annualized Amount	Calculate: Yearly Volume x TCO Unit Amount
One Time Cost/Transition (per piece)	Calculate: Yearly Volume / One Time Cost/Transition

- Create standardized work practices that document remaining labor content so it can be more easily transferred if required
- Lean the process out labor accounts for 7-12% of the part cost (less for TLC & TCO)
- Focus on "Clean Sheeting" / "Should Costing" designs to determine what the absolute lowest cost will be based on index pricing
- Spaghetti Map the complete supply and demand chain from cradle to grave
- Focus on redesigning product lines (DFx) based on customer order winners (price and speed of delivery are big ones now)

Supply Chain and Operations Strategy

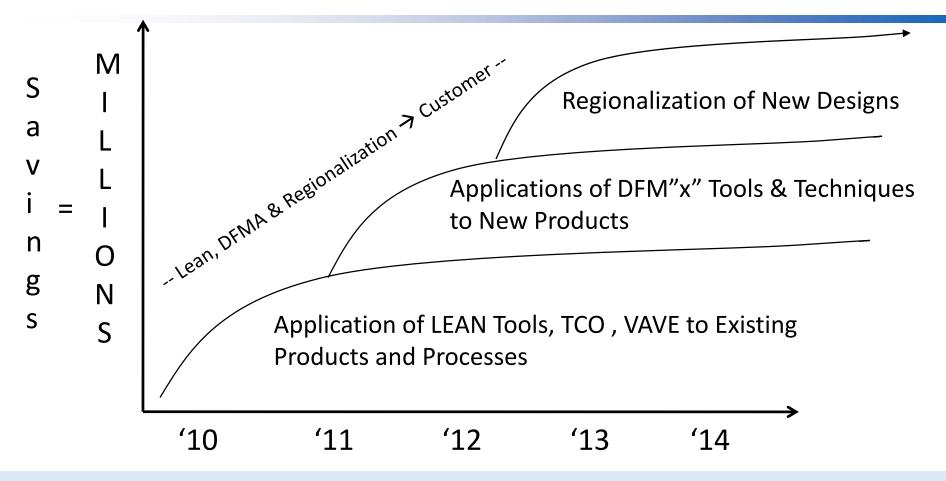
Match our operational and supply chain capabilities in support of the Business Segment Strategies of growth, new product introductions, integration of 3rd party products, repeatability and speed of delivery.

Short term, Lean all of our facilities helping to determine the proper course for plant and product rationalizations while providing increased inventory turns, increased productivity and decreased square footage requirements in 15 months from kick off.

Longer term develop Regional Manufacturing/Distribution Centers (RMDCs) utilizing processes and products that incorporate postponement theory providing the greatest flexibility against demand variation while providing the lowest TCO, the lowest inventory carrying cost and the quickest speed of delivery.

End Results of Strategy

- RMDCs located close to our core customer markets ensuring speed of delivery requirements are met
- Core Manufacturing locations located near Engineering, Sales and Marketing resources allowing for quick NPI roll outs
- Fully utilized Low Cost Country manufacturing center to RMDC
- A robust, flexible and agile Operational Organization that has replicated processes in multiple regions ensuring continuity of supply


All organizations driven by *Lean techniques*

All sourcing decisions leverage the *TCO model*

All NPD utilizing DFx

Tying it All Together

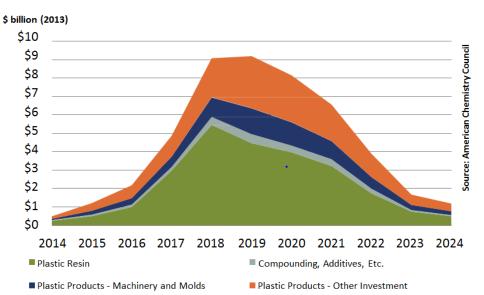
Working across all disciplines will drive value beyond a simple cost reduction/design and drive customer intimacy

Examples of Success – Burst Plugs

- Historical supplier had issues
- Price, Quality, Delivery
- Hard to quote, non-standards displayed completely erratic behavior

Used BDI Tool to develop 8 models based upon (4) major features/attributes

- Thread type, lot size, retention mechanism, length
- 750 DFM calculations vs. Supplier Quotes (Configurations & lot size combinations)
- Business up 20% yr/yr for the last (2) years
- Cost and Price lower
- Quotes developed instantly from DFMA models



Example of Success – Visco & eRCU

- From Red to Blue Oceans
- Driving cost down, while increasing value
- Expanded available markets 10x as of today, 1000x by 2020
- DFMA provided the insight to go forward

Anticipated Wave of Plastics Industry Investment by Segment

Questions?