

Part Redesign with Minimal Disruption and Additional Cost to Assembly Process

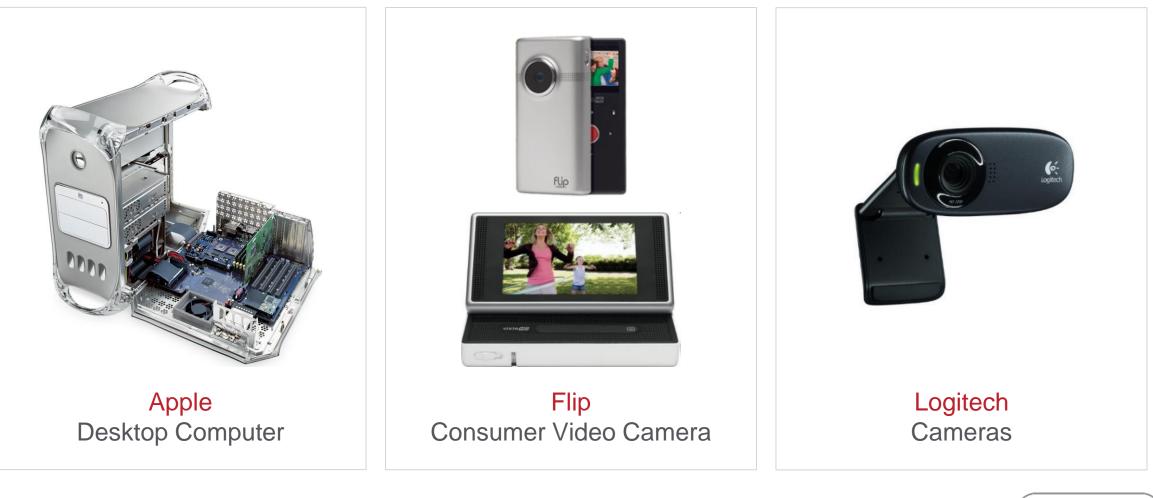
- Founded in 1993
- Comprehensive product engineering/mechanical engineering services
 - Turnkey product development
 - Subassembly development, engineering analysis, materials cost analysis
 - Manufacturing cost reduction
- Serve leading companies around the globe

Acorn Advantage

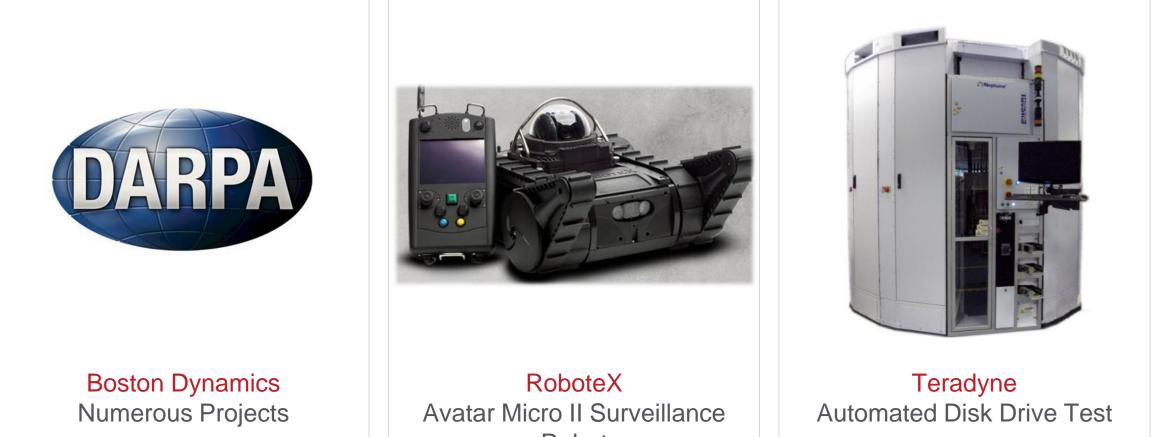
PROVEN PROCESSES

- Extensive simulation / analysis
- DFx
- Project peer reviews
- Acorn CAD check

GLOBAL RESOURCES


- Four design centers
- Worldwide ecosystem of contract manufacturers and suppliers

Acorn Advantage



Consumer Products

Industrial / Robotics

Robot

Intuitive Surgical Training Module

Cholestech Blood Analyzer

Rack Mount Products

(sacorn)

DFMA Boothroyd Dewhurst, June 2015 WATER PITCHER SLEEVE DESIGN

PART REDESIGN WITH MINIMAL DISRUPTION AND ADDITIONAL COST TO ASSEMBLY PROCESS

Iconic Product

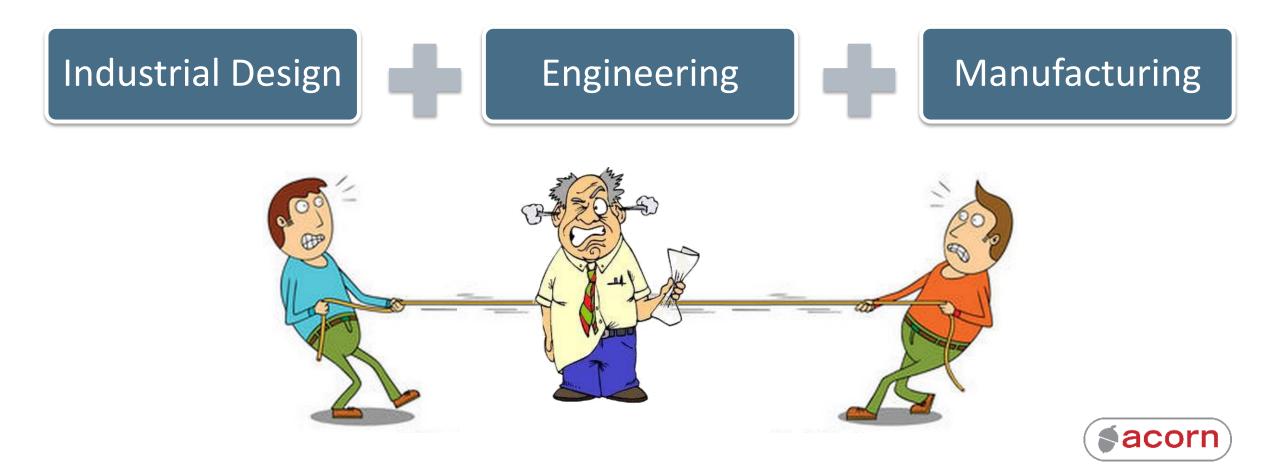
...refreshed

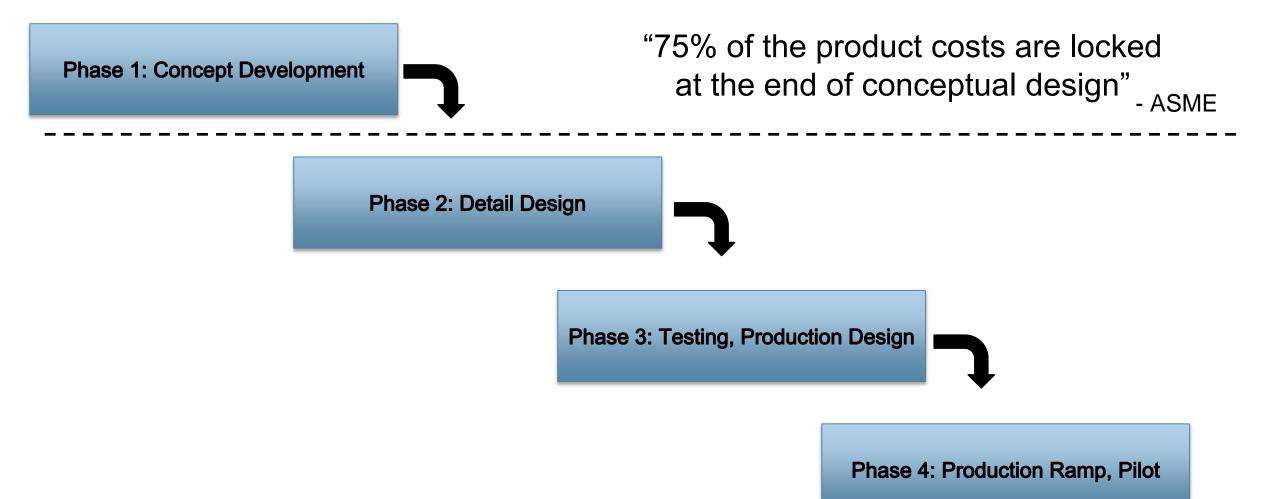
- new and exciting
- differentiation
- colors
- patterns

"...look as good as possible, as inexpensive as possible."

"Before we put this design on paper, how do you, the manufacturing and assembly people, want us to proceed to make your job easier?"

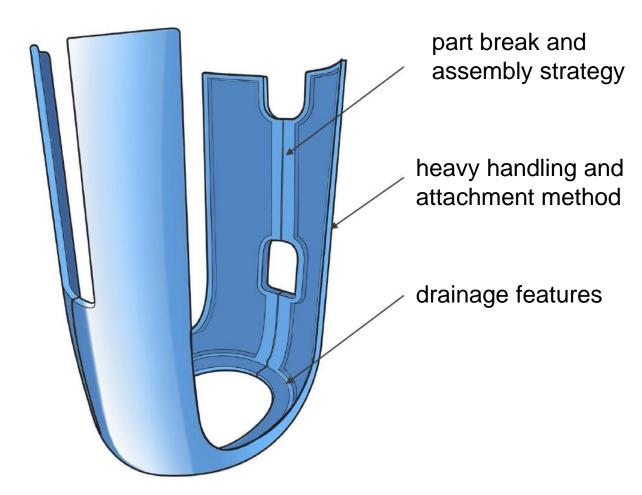
- Lew Veraldi

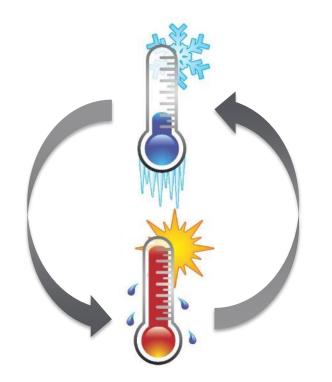

Ideas, Restrictions, Reality



Engineering Design Goals

- No modification to existing tooling
- Existing supply chain
- Interchangeable design patterns
- Robust attachment
- Minimize assembled cost





thermal cycling (fridge - dishwasher)

Concept Development Brainstorm

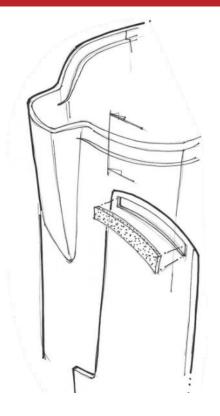
Concept Development Brainstorm

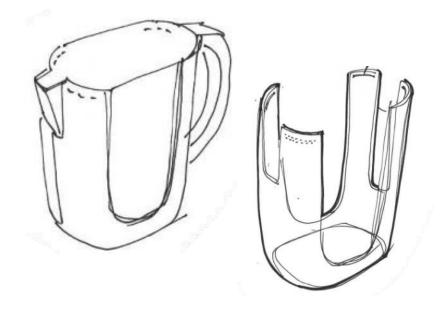
Manufacturing:

- Injection molded
- Thermoformed
- Vinyl die cut
- In-mold labelling
- Sputtering
- Painting
- Flocking
- Thermal spraying
- Printing

Assembly:

- Thermal stakes
- Spot welds
- Solvent bond
- Snaps
- Ultrasonic weld
- Laser weld
- Pins
- Adhesives


			Att	achmer	t Metho	d			
Concept	Description	Pitcher Tool Simplicity	Sleeve Tool Simplicity	Assembly Simplicity	COGS	Ease of implementation	D Intent	Integration	Alternative materials
F01	Press in Tab	0	0	1	0	U	-1	1	1
F02	Tab	0	1	0	1	0	-1	1	0
F03	Hook	0	0	1	0	0	0	0	1
F04	Spout Hook	0	roquir	oc tool	modifica	tion ⁰	-1	0	1
B01	Handle Hook	0	requi	es toor	nounca		-1	0	1
FB1	Clip	1	-1	1	0	1	0	1	0
B02	Interlock	1	1	0	1	1	0	1	0
FB2	Groove	1	-1	0	0	-1	-1	1	1
FB3	Thermoformed	1	1	1	0	1	1	1	0
FB4	Vinly Die Cut	0	perfor	mance /	functior	hality 1	0	1	-1
FB5	In Mould Labeling	0	1	1	0	0	1	1	0
FB6	Sputtering	1	1	0	0	0	-1	1	-1
FB7	Painting	1	1	0	1	1	0	1	-1
FB8	Modified Flocking	1	outsid	e vendo	r capabi	lities 0	1	1	-1
FB9	Flame Spray	1	1	-1	0	0	1	1	-1
FB10	Printing	1	1	0	1	1	0	1	-1
FB11	Thermal Staking	1	1	0	1	0	0	0	0
FB12	Hot Pin Stake	1	1	0	1	0	0	0	0
FB13	Solvent Bonding	1	0	0	1	0	1	0	-1
FB14	Ultrasonic	1	0	-1	0	0	1	1	0
FB15	Laser Welding	1	1	-1	0	0	1	1	0
FB16	Welding Pins	1	1	0	0	0	0	1	1
FB17	Adhesive	1	1	1	0	1	1	1	0



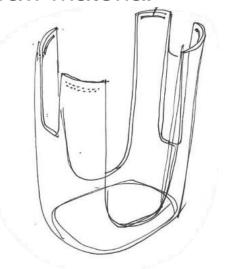
Attachment Method

• Foam Tape

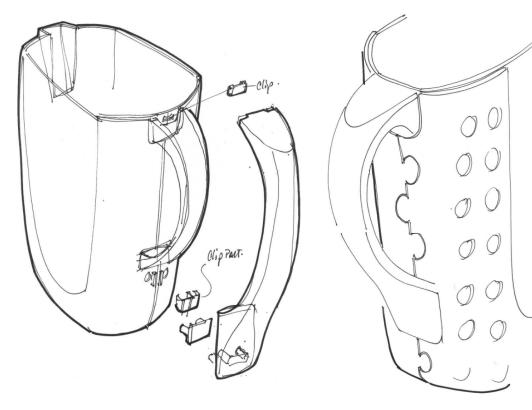
- + Allows for different sleeve material options
- + Simple fixture, less tooling
- + Flexibility to allow for thermal expansion / contraction
- Highly visible
- Larger surface area required
- Additional cost per unit

- Welding
 - + Bond line can be well hidden
 - + Same material eliminates concern of thermal cycling
 - Requires same material for sleeve as base
 - Tooling required

Method	Equipment Cost	Fixture Cost	Assembly Time	Material Cost
Laser				
Ultrasonic				>
Adhesive				



- Welding
 - + Bond line can be well hidden
 - + Same material eliminates concern of thermal cycling
 - Requires same material for sleeve as base
 - Tooling required



Injection Molded Sleeve

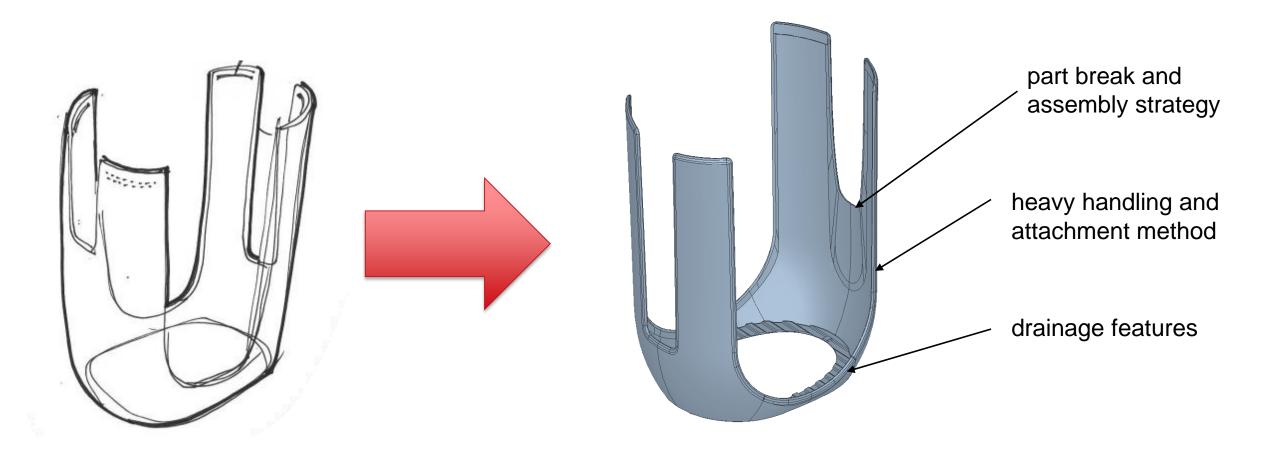
- Two Piece
 - + Full coverage under the handle
 - + Undercut easy to mold
 - + Simple tooling
 - Fitment due to two tools (not a common core)
 - Additional handlings
 - Additional parts
 - More raw material

- Single Piece
 - + Less time handling
 - + Tighter fit
 - Undercut in areas of sleeve
 - Less material required

"Bumping" it off the tool is the cheapest production solution.

- Single Piece
 - + Less time handling
 - + Tighter fit
 - Undercut in areas of sleeve
 - Less material required
 - + Simple tooling

Phase 1: Concept Development


Phase 2: Detail Design

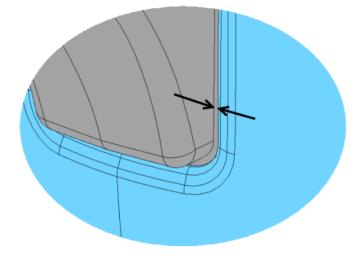
Phase 3: Testing, Production Design

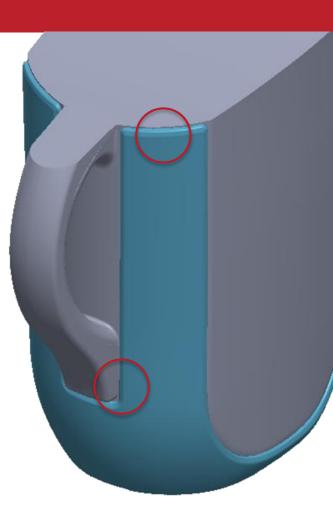
Phase 4: Production Ramp, Pilot

Detail Design

Phase 1: Concept Development

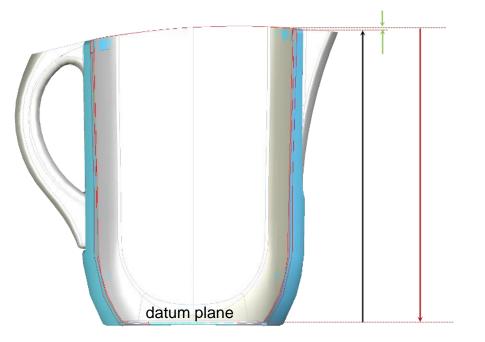
Phase 2: Detail Design


Phase 3: Testing, Production Design


Phase 4: Production Ramp, Pilot

Tolerance Analysis, Production Design

- Tolerances are a key aspect of the detailed design
 - Cosmetic gaps under scrutiny
 - Maximize yield
 - Ease assembly

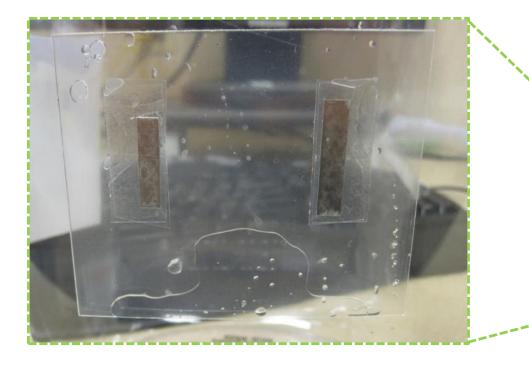

Tolerance Analysis, Production Design

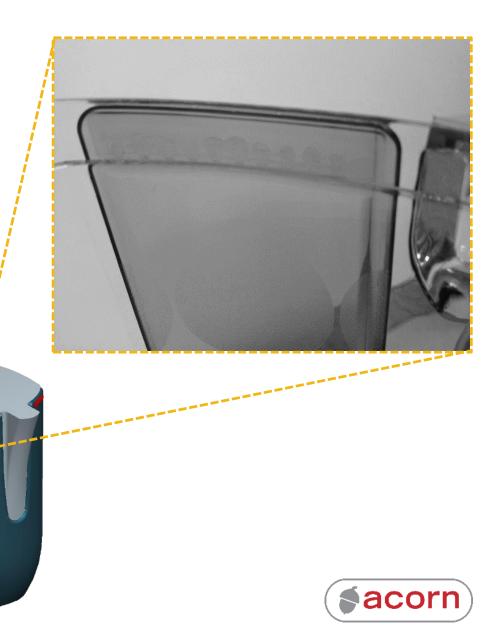
- Tolerances are a key aspect of the detailed design
 - Cosmetic gaps under scrutiny
 - Maximize yield
- Reduced Cost
- Ease assembly
- Manufacturing partner involvement provided:
 - Historical part data
 - Specific manufacturing capabilities

Tolerance Stack Up Analysis

Loop Name	Sleeve Gap
Revised Date	7/18/2011

				Effective Process	
Element Name	Nominal	±Ti	PDF	Variation	Normal SD
Sleeve Height		0.5000	n	0.166667	0.1667
Pitcher Height		0.5080	n	0.169333	0.1693
			Alpha (Single		Percent
Nominal Gap	1.19	Z Predicted	Sided)	DPPM	Defects
Upper Spec Limit	5	16.04	0.000000	0	0.00%
Lower Spec Limit	0	5.00	0.000000	0	0.00%
			Total DPPM	0	0.00%
		(Effective Z	5.00	
				0.00	


Solving for our predicted distances: Z (Sigma) = 5.0


Or, 99.99997% of the time, we would expect the gap to be between 0-5mm.

Testing, Production Design

- Drainage \rightarrow pitcher sleeve spacing
- Validate weld strength and aesthetic
- Drop testing, 42" counter

Phase 1: Concept Development

Phase 2: Detail Design

Phase 3: Testing, Production Design

Phase 4: Production Ramp, Pilot

Concluding Thoughts

Engineering Design Goals

- No modification to existing tooling *motion* no tools modified, one new tool
- Interchangeable design patterns
 new mold cavity per design
- Robust attachment
- Minimize assembled cost

Keys To Success

- Consumer products are a balance team effort, DES + ENG + MFG
- Work closely with your manufacturing partner *method* reduce time to market
- Assess manufacturing costs often

- ultrasonic welding passed drop test

maintain current MSRP

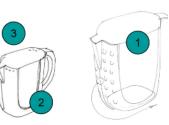
Q and A

"Designs That Perform" for Global Manufacturing and Worldwide Customers

Visit our website at <u>www.acornpd.com</u> for more information

Drew Blouch Sr. Mechanical Engineer <u>dblouch@acornpd.com</u> (617)758-4163 (office) Barry Braunstein Vice President Business Development - East <u>bbraunstein@acornpd.com</u> (617)475-1541 (office) (617)312-0104 (cell)

Analysis Leads to Down Selection


acorn

ASKING DANIEL FOR BETTER EXPLAIN ON DOWNSELECTION PROCESS → for cost / DFM / DFA

Best Cost

1. Each half injection molded with microban

- 2. Sleeve joined with ultrasonic weld in the front, back,
- 3. Sleeve welded to the pitcher at the top
- 4. Drainage features

Single Piece

0°0 *								_	
0.0					Microban	Sleeve	Cosmetic Mold		Drainage
Concept 01	# Pieces	Front Bond	Back Bond	Top Bond	Additive	Features	Method	Material	Feature
Best performance	One	Laser	Laser	Laser	No	Debossed	RHCM	SAN	No
Best ID A Best ID	Two	Laser	Adhesive	Laser	Yes	Holes	RHCM	РС	Yes
Best Cost	One	Ultrasonic	Ultrasonic	Ultrasonic	Yes	Debossed	Texture	SAN	Yes
Recommended	One	Ultrasonic	Ultrasonic	Adhesive	Yes	Debossed	RHCM	PC/ABS	Yes
Annular Snap	Five	Mechanical	Mechanical	Adhesive	Yes	Holes	Texture	PC/ABS	Yes
Metal Clip	Five	Mechanical	Mechanical	Adhesive	Yes	Debossed	RHCM	PC/ABS	Yes
PG# 38	-	-	•	-			-		-

Other features:

Clorox / Confidential

Additives: Yes Sleeve Feature: Debossed Mold Method: Traditional Material: SAN

M

	Attachment Method											
Concept		Sleeve Tool Simplicity	Assembly Simplicity	Assembly Cost		Ease of implementation	Integration	Microban Additive	Material Cost			
G01	Best Performance	1	0	0	0	-1	1	0	1			
G02	Best ID	1	-1	0	0	0	1	1	0			
G03	Best Cost	1	0	1	1	1	1	1	0			
G04	Recommended	1	1	0	0	1	1	1	0			
G05	Annular Snap	-1	0	0	-1	0	0	1	0			
G06	Metal Clip	0	0	0	-1	1	0	1	0			

