

2015 International Forum on DFMA Boothroyd Dewhurst

DFMA Integration into Supply Chain and Operations

June 3, 2015

Presented by: Kevin Dailida Sr. Director of Operations and Supply Chain

Agenda

- Supply Chain Getting Started
- DFM Analysis
- Design For Manufacture Cost Drivers
- Supply Chain Transformation
- Supplier Engagement

Supply Chain - DFM Process Model

Dynisco

- Identify Size the opportunity, Price vs. DFM Price
- Validate Accuracy of the DFM model & design cost drivers

The best opportunities originate in the design phase

Supply Chain – Getting Started

- Where to start?
 - Legacy designs
 - Existing / legacy parts managed by Supply Chain
 - Total Spend Opportunities Volume X Price (Standard)

Identify (Parts):

- Dwg / Model
- Price (Standard)
- Yearly volume
- Batch / lot size

Validate (DFM Analysis):

- Identify cost drivers
- Suggestions to reduce cost
 - What else could perform function?
 - What would the alternative cost?

Supply Chain - Getting Started

Part Number

Top 80% of spend is reflected in 20% of parts

DFM Analysis – Material

<u>File Edit Analysis View Reports Graphs Tools He</u>	elp	
🗅 😂 🗔 🐛 🤊 💥 🖻 💼 🥒 💊	📎 040 030 🖹 🦿	
Generic nickel alloy machined/cut from stock part Stock process Workpiece Generic automatic chucking lathe Setup/load/unload Load bar Feed bar to stop Rough and finish cylindrical turn Finish face Drill single hole Finish contour turn Cutoff Rough and finish cylindrical turn Form or groove (parallel) Drill single hole Finish face Form or groove (parallel) Form or groove (parallel) Form or groove (parallel) Form or groove (parallel)	Analysis type Full analysis Quick estimate Part basic data Batch size Overall plant efficiency, % Stock material form Rou Material hardness, Bhn Material cost, \$/lb Material scrap value, \$/lb Cutoff method Oth Part geometry Volume, in ³ Weight, lb	1000 85 ind bar or rod ▼ 178 25 1.15 er ▼ 8.321 2.671

DFM Analysis – Material

ile <u>E</u> dit <u>A</u> nalysis <u>V</u> iew <u>R</u> eports <u>G</u> raphs <u>T</u> ools <u>H</u> el	p	
🗅 😂 🗔 🎭 🖙 💥 🗈 👘 🥒 💊 🛇	📐 በማስ በ⊒ስ 📸 🦿	
Generic nickel alloy machined/cut from stock part Stock process Workpiece Generic automatic chucking lathe Setup/load/unload Load bar Feed bar to stop Rough and finish cylindrical turn Finish face Drill single hole Finish contour turn Cutoff Rough and finish cylindrical turn Finish contour turn Cutoff Rough and finish cylindrical turn Finish contour turn Form or groove (parallel) Drill single hole Finish face Finish face Form or groove (parallel) Thish face Form or groove (parallel) Thish face Form or groove (parallel) Finish face Form or groove (parallel)	Bar dimensions Bar stock length, ft Workpiece geometry Length, in. Diameter, in. Picture Load Notes	10 1.25 3.75 Scale to fit Transparent

DFM Analysis - Setup

<u>File Edit Analysis View Reports Graphs Tools</u>	lelp	
	📎 아파 대파 🐨 🦿	
Generic nickel alloy machined/cut from stock part	Work handling Workholding device Collet	•
Generic automatic chucking lathe Setup/load/unload Load bar	Load/unload time, s 15.1 Reversal time, s 11.39	
 Feed bar to stop Rough and finish cylindrical turn Finish face Drill single hole 	Machine setup Machine rate during setup, \$/hr 16.5	
Finish cylindrical bore Finish contour turn Cutoff Rough and finish cylindrical turn	Setup operator rate, smilling Setup rate, \$/hr Basic setup time, hr 1.5	46.50
Form or groove (parallel) Drill single hole Finish cylindrical bore Finish face	Setup time per tool, hr 0.25 Other costs 0 Tool, fixture, or program cost, \$ 0	

DFM Analysis - Processing

DFM Software - Extras

<u>File Edit Analysis View Reports Graphs Tools H</u> elp				
] 🗅 🎽 🖬 🐂 🤊 🗶 🛍 🖦 🏈 🦻	X			
 Load bar Feed bar to stop Rough and finish cylindrical turn Finish face Drill single hole Finish contour turn Cutoff Rough and finish cylindrical turn Form or groove (parallel) Drill single hole Finish face Form or groove (parallel) Drill single hole Finish face Form or groove (parallel) Drill single hole Finish face Form or groove (parallel) Drill single hole Finish face Form or groove (parallel) Inspect visually Edge break Check with snap gage Measure with depth micrometer Measure with micrometer (tolerance >/= 0.001 ir Wash/degrease part Plastic bag part Box parts and tape box Profit 		Rejects, % Sampling percentage, % Inspected area, in ² Labor rate, \$/hr Part handling time, s Inspection time, s Operation time, s Operation time, s Picture Load Notes Acquire one part and visually inspect surfa flaws.	0.5 100 33.328 30 5.4 2 7.40 Scale to fit Transparent	

Design for Manufacture – Cost Drivers Dynisco

Modeling makes things easy....too easy?

Just because you can model it, doesn't mean you can machine it.... And be cost effective

Supply Chain needs to match supplier capability to design

Design for Manufacture – Cost Drivers Dynisco

- Specified vendors (Engineering designated)
- Units of measure: Inch vs. Metric
- Metal standards based on geography

Be aware of design specifications that can drive cost

Design for Manufacture – Cost Drivers Dynisco

Limited Supply Base Funnel

Ensure finishes are aligned to function

Today's businesses are heavily dependent on supply chains

- Companies are seeking a new / different range of skill sets to support supply chain activities
- Placing more emphasis on supply chain analytics and less on keystrokes

Achieving more value through data analysis and decisions

Find ways to automate repetitive purchasing transactions

- Discussion driven by historical information and cost reduction targets
- Very little information regarding mfg processes shared or discussed
- Primary communication RFQs

- Value Add Value Engineering group supplies additional process information & DFM models
- Primary communication Supplier
 Discussion

DFM data stimulates improved communications

Did I get a fair price ???

Better Information ... Better Negotiations

DFM brings discussion from the past to present

Minimizing negative perceptions is key

Supply Chain - DFM Process Model

Convert – Engage suppliers

Move the focus from internal to external

Supply Chain – Supplier Engagement

Start with a parts list
 Performed DFM analysis
 Review design and print specifications
 Obtain understanding on pricing

Dvnisco

Suppliers (Initial responses)

- "Material price went up"
- We have held the price for "X" amount of time
- Analysis apprehension...validity (\$\$\$)
- Red Flag: Quote / Price is a "nice, round number" (\$230) and a large gap exists when compared to DFM price

Supply Chain – Supplier Engagement

- 150+ parts
- DFM's completed
- Meeting Established
- Approach:
 - Non-adversarial
 - Discuss cost drivers / processes
 - Review DFM of "their" part(s)
 - Solicit supplier suggestions
 - Convey our message

Dynisco

Supply Chain - Results

- Over last few year's VMAS businesses have identified, modeled and evaluated over \$4.1M in spend
- Over \$685K or 17% of the spend was highlighted as savings opportunities
- Opportunities included modifications to designs, potential material substitutions, process changes and strait forward cost reductions (being charged to much)

Supply Chain - Results

Validated that SC was achieving fair pricing

<u>Burst plug</u> <u>Configuration</u>	<u>Usage</u>	<u>Lot size</u>	<u>Std</u>	DFM Pricing	Actual Pricing
1 2 3	875 6 1	100 6 1	\$ \$ \$	-30% -81% -41%	-26% -79% -46%
				Burst Plug 700 600 18% increase in Q1 Bookings 200 100 0 Jan	Bookings (units) - 2014 - 2015 Feb Mar

DFM played key role in increased bookings

Supply Chain - Closing Remarks

- DFM is not specifically designed for cost reduction alone
- It can be utilized to validate pricing in addition to negotiating better pricing based on manufacturing analytics
- DFM helps supply chain organizations move forward and improves the value that individuals can bring to the business
- DFM has been a key tool within Dynisco to help develop better supplier relations and weed out suppliers whom we don't want to do business with.

Suppliers participating in process have seen more business

Questions on DFMA Integration into Supply Chain and Operations?

Thank you