DFMA Back To Its Roots

David Meeker Neoteric Product Development meeker@mit.edu

33 International Forum on Design for Manufacturing and Assembly Global Competitive Advantage September 11&12, 2018

The Robot Revolution

"Integrate, Automate, or Evaporate".

Manufacturers needed peripheral equipment feeders and grippers to present parts so that a robot could place them appropriately in the product assembly.

With funding from the NSF, Boothroyd and Dewhurst did pioneering work in assembly automation which included the analysis of parts for automated feeding. (Boothroyd, 1991)

The Robot Revolution

AUTOMATIC HANDLING-							
DATA FOR NON-ROTATIONAL PARTS							
(first digit 6, 7 or 8)							

Key: OF FC				A \pm 1.10 or B \pm 1.1C (code the main feature or keatures which distinguish the adjacent surfaces having similar dimensions)									
tiggt 6 ►			A > 1.18 and	step para	s or chamfer illel to -	s (2)	th pe	rough grooves railel to —	holes or recesses	other - including slight			
	0.45 1.5 0.5 ±		6 × 1,1C	X axis and > 0.1C	Y axis and > 0.1C	Z axis and > 0.18	X axis and > 0.1C	Y axis and > 0.1C	Z axis and > 0.1B	> 0.1B (cannot be seen in silhouette)	asymmetry (3), fea- tures too small etc.		
			0	1	2	3	4	5	6	7	8		
part sym abo thre	t has 180° umetry out all se axes (1)	0	0.8 1 0.9 1 0.6 1	0.8 1 0.9 1 0.5 1	0.2 1 0.5 2 0.15 2	0.5 1 0.5 1.5 0.15 1.5	0.75 1 0.5 1 0.5 1	0.25 1 0.5 1.5 0.15 1	0.5 1.5 0.6 1 0.15 1.5	0.25 2 0.5 1 0.15 2			

$\boldsymbol{\boldsymbol{k}}$		>		ps or chamfers (2) rallel to -			through grooves (2) parallel to -				holes or recesses		other - including				
-2		22	X axis and > 0.1C		Y axis and > 0.1C		Z axis and > 0.18		X axis and > 0.1C		Y axis and > 0.1C		Z axis and > 0.1B		> 0.18 (cannot be seen in silhouette)		asymmetry (3), fea- tures too small etc.
			0		1		2		3		4			5	6		7
part has 180° symmetry about one axis only (1)	about X axis	1	0.4 0.5 0.4	1 1	0.6 0.15 0.5	1 1 1	0.4 0.25 0.4	75 2	0.4 0.5 0.2		0.3 0.25 0.3		0.7 0.25 0.15	1.5	0.4 0.25 0.1	2 10 20	
	about Y axis	2	0.4 0.4 0.5	1 1 1	03 02 035		0.6 0.25 0.5	15 2 2	0.5 0.4 0.2	* * * *	03 025 015		0 4 0 25 0 15	1 1 1	0.4 0.25 0.15	a new	
	about Z axis	3	0 4 0-3 0 4	1 1 1	0.3 0.2 0.2		0.4 0.25 0.4	13 2 2	0.4 0.3 0.2	1111	0.3 0.25 0.15		0 4 0.25 0.15	15	0.4 0.25 0.15	2 7 7	
no symmetry e-main feature(s) me the orientation) [4]	orientation defined by one main feature	4	0.25 0.25 0.15	1 1 1	015 01 014	1 15 1	n 15 0.24 0.15	13 2 1	0.3 0.2 0.1		0.95	1 15 1	0.15 0.15	15	01 015 008	10 10 10	
	orientation defined by two main features and one is a step, chamfer or groove	6	0.2 0.1 0.05	10 m m	0.15 0.1 0.05	2 33 2	01 0.1 0.05	28 4 25	01 01 005	10 m 20	0 15 0 1 0 05	2 2 2	0,1 0,1 0,05	25	01 01 005	Call Call Call	
part has (code th that def	other - in- cluding slight asym- metry (3) etc.							- 161	esse is	anda.	ING RI	Q.M	0				

Figure 4: The Six Stable Block Orientations: Flat Lengthwise (FL), On-Edge Lengthwise (OEL), Erect Lengthwise (EL), Flat Crosswise (FC), On-Edge Crosswise (OEC), and Erect Crosswise (FC)

© 1982 Boothroyd & Dewhurst

DFMA Back To Its Roots

- The robotic revolution faded in the United States, mainly because inserting a robot to replace a worker to automate traditional hand assembled products was more difficult than initially believed.
- The area of design for manufacturing and assembly (DFMA) shifted focus as a result to the analysis of whole products and their constituent parts and subassemblies.
- Boothroyd and Dewhurst incorporated in 1983

What was happening in 1983?

What was happening 35 years ago ?

http://www.worldometers.info/world-population/

World population was at 4.84 billion
Gasoline in U.S. was \$1.21 a gallon

What was happening 35 years Ago?

- First Dot.COM company name was registered Symbolic's Corporation
- Block Buster video opened its first store
- New Coke was introduced

What has Happening 35 years ago

- Nintendo sells its First entertainment System in U.S.
- Dave Letterman's first top ten list appeared "what rhythms with peas"
 - Titanic resting place was discovered

What was happening 35 Years Ago?

- Microsoft Windows 1.0 was released
- Back to the Future was block buster movie that summer
- Boothroyd and Dewhurst was incorporated held their first DFMA conference

DFMA Back To Its Roots

Origins, History and Evolution of DFMA methodology & software

- 1977 1980 Boothroyd starts DFA research, first NSF funding, Dewhurst joins UMass. Faculty
- 1980 -1983 Boothroyd and Dewhurst begin partnership, Development of DFA software for Apple II, conversion of software for IBM PC, DFA handbook published
- 1983 1986 DFA PCB research begins, B&D move to Uni. Of R.I., W.A. Knight moves to URI, release of robotic assembly software, first DFMA conference held.

 1986- 1989 Work begins on DFM, publication of DFA handbook, machine parts and injection molding software release.

Funding was provided by NSF (9 years) & Xerox, GE, DEC, AMP Inc., IBM, Gillette, Westinghouse,

DFMA Back To ITS Roots

Origins, History and Evolution (cont.)

- 1988 Committee for the Advancement of Competitive Manufacturing formed, Members included GM, Ford, Loctite, DEC, Navistar, Allied Signal
- 1989- 1991 DFA 5.0 released with PCB analysis, Sheet metal DFM released, DFA 5.1 released supporting Macintosh and VMS, Die casting and Powder metal DFM software released.
- 1991 1994 Newer versions of DFA, Large parts DFA, and Design for the Environment, and additional DFM modules released
- 1991 National Medal of Technology Recipients

White House Ceremony honors BDI Founders

DFMA Back To Its Roots

Origins, History and Evolution (cont.)

- 1994 -1997 Updated versions of DFA and DFM, and Design for Service software release.
- 1997 2015 versions 7, 8, 9, 10 of DFA released as well DFM concurrent costing 2.0, 2.3, Major software rewrites to keep up with ever changing Microsoft operating systems
- 2015 2018 Improvements made to software to keep up with the 26 different windows versions that have come and gone, partial CAD data capture added, quick estimation feature.
- 2018 and beyond Extrusion Metal DFM module and more extensive CAD model input data capability

DFMA Back to Its Roots

DFMA Back To Its Roots

The resulted was a methodology and modular software tool that is customizable, easy to use, and capable of being used during the entire Product Development process

Designing Differently

The application of the methodology and software tool can be applied:

- Anytime during product development process
- Bottoms up
- Top down
- Subassemblies
- Single Parts
- Labor
- Quality Prediction
- Cost Estimates
- Almost anything you can think of

DFMA Back To Its Roots A couple of prerequires:

Product Development Design Process

- A high quality new product development process
- A clear well communicated new product development strategy
- Adequate resources
- Senior management committed to new products
- An entrepreneurial climate
- Senior management accountability
- Strategic focus and synergy
- High quality development teams
- Cross functional teams

Source: Benchmarking the firm's Critical Success Factors in New Product Development Robert G. Cooper and Elko Kleinschmidt, Journal of Innovation Management, 1995 12: 374-391

Product Development

DFMA can be used throughout the entire Product Development Process

•Early Product Costing

- •Competitive product benchmarking
- •Concept selection
- •Creation of time standards
- •Assembly Instructions
- •Deign Simplification
- •Cost reduction
- •Quality
- •Vendor quote verification
- •Estimate hard tooling

Typical Product Cost Breakdown

Source : The True Cost of Oversea Manufacturing June 2004 N. Dewhurst & D. Meeker

Define Levels of Cost Analysis

<u>Level 1</u> - A first impression by knowledgeable engineers of what a part , assembly or system would cost based on prior experience. (analogy)

<u>Level 2</u> - An estimation based on prior experience with similar products, budgetary estimates, vendor quotes and expert opinion and experience. (parametric)

<u>Level 3</u> - Detailed costing of every part accomplished by using material cost estimation data bases, and time/motion studies. A high degree of accuracy is achieved by comparisons to industry standards and vendor quotes. (analytical)

Trend Line Analysis

Tractor example

Trend Line Analysis

Next steps:

Break lawn tractor into major subassemblies

Project trend lines for each major subassembly

Next level is to break down material content of leach major subassembly, to incorporate material trends.

Best paper on topic is "Controlling New Product Cost Through Trend Analysis" by Terry Ayer Teradyne, Inc. May 2004 B&D conference

Product development

DFMA can be used throughout the entire Product Development Process

- •Early Product Costing
- Competitive product benchmarking
- •Concept selection
- •Creation of time standards
- •Assembly Instructions
- •Deign Simplification
- •Cost reduction
- •Quality
- Vendor quote verification
- •Estimate hard tooling

Product Benchmarking

Only the Paranoid Survive"

Andy Grove 1936- 2016

Building better products requires a good comparative perspective about other companies to gain insight into other sources of outstanding performance

> **Product Development Performance Kim Clark & Takahiro Fujimoto**

Definitions

Benchmarking

•Is the continuous process of measuring products, services and practices against the toughest competitors or those recognized as industry leaders.

Competitive Intelligence

•Is the process of gleaming and combining disparate information about a competitor in order to deduce its objectives.

Reverse Engineering

•Is the systematic dismantling of a product to understand its technology with the purpose of replication.

A Comparison of 1U Servers

Sun Netra - System Front View

Whats inside

IBM NetInfinity 4000R - Internal Overview

Function Cost Comparison

	Sun N	etra t1	IBM NetInfinity 4000R				
	Cost	% of Total	Cost	% of Total			
Cooling	\$14	0.9%	\$9	0.5%			
CPU	\$675	42.6%	\$189	11.2%			
Disk	\$215	13.6%	\$281	16.6%			
Enclosure	\$50	3.2%	\$93	5.5%			
I/O	\$235	14.8%	\$187	11.0%			
Memory	\$274	17.3%	\$410	24.2%			
Power	\$86	5.4%	\$52	3.1%			
System	\$17	1.0%	\$428	25.3%			
Pkg/Doc/SW	\$19	1.2%	\$42	2.5%			
Total	\$1,585		\$1,691				

Product development

DFMA can be used throughout the entire Product Development Process

•Early Product Costing

•Competitive product benchmarking

Concept selection

- •Creation of time standards
- •Assembly Instructions
- •Deign Simplification
- •Cost reduction
- •Quality
- Vendor quote verification
- •Estimate hard tooling

Traditional Concept Selection of Design Alternatives

(a) Misleading producibility guideline for the design of sheet metal parts

Set-up	0.015	0.023
Process	0.535	0.683
Material	0.036	0.025
Piece part	0 .586	—— 0.731
Tooling	0.092	0.119
Total manufacture	0.678	0.850
Assembly	0.000	0.200
Total	0.678	1.050

(b) Estimated costs in dollars for the two examples if 100,000 are made

Locomotive fab to cast example

ssembly fabrication/Generic low carbon steel bas

Assembly fabrication process
 Setup welding jig
 Get part(s) and position in jig

Get part(s) and position in jig

Manual MIG/TIG butt weld (one side) Get part(s) and position in jig

Manual MIG/TIG tack weld 2.0 dia pipe Manual MIG/TIG fillet weld 2.0 dia pipe

Fab Assy Gray Cast 155B9008ACP40_0 Pipe { 4

Elbow

Victaulic Pipe Manual MIG/TIG tack weld Manual MIG/TIG butt weld (one side) Get part(s) and position in jig 15589006ACP40_0 Get part(s) and position in jig 2.0 X 90 elbow Manual MIG/TIG tack weld Manual MIG/TIG butt weld (one side) Get part(s) and position in jig

Victaulic Pipe Manual MIG/TIG tack weld

Flange

Concept Selection

6 Parts ' cost estimate'

- DFMA estimate \$84
- Assembly time 1384 sec (23 min)
- Current price \$209

Annual Savings = \$261k

1 Part 'could cost'

- DFMA estimate \$25
- Assembly time 0 sec
- Expected Price \$35

Source: B&D Inc. example

Cost Estimating Example

- Machining estimate
- Machining estimate with recommendations
- Alternative manufacturing methods

Machining issues

Highlighted areas represent small fillets or chamfers

This area represents an undercut which sits underneath the first undercut as shown in the other highlighted area

Machining Estimate

Current:

Time = 12 - 15 hrs

Cost = \$780 - 975

With Recommendations:

Time = 7 - 10 hrs

Cost = \$455 - 650

Total Savings = <u>\$ 325 / part</u>

Alternative Methods Estimates (investment cast)

Investment Casting

Re-designed for Investment Casting:

Investment Cast Part:

- Initial Tooling Investment of \$22,000 - \$25,000
- Cast parts will cost: \$16^{.00} - \$22^{.00} / part (in lots of 100)
- CNC Machine side features with 4th axis machine center < 2 hours = \$110^{.00}

Total Part Cost:

< \$135.00 each
Alternative Methods Estimates (Metal Injection Molded)

Metal Injection Molding

Some Re-design Required:

Metal Injection Molded Part:

- Initial Tooling Investment of \$45,000 - \$50,000
- Molded parts will cost: \$45^{.00} - \$50^{.00} / part (in lots of 100)
- CNC Machine side features with 4th axis machine center < 2 hours = \$110^{.00}
- **Total Part Cost:**

Product development

DFMA can be used throughout the entire Product Development Process

- •Early Product Costing
- •Competitive product benchmarking
- •Concept selection

Creation of time standards

- •Assembly Instructions
- •Deign Simplification
- •Cost reduction
- •Quality
- Vendor quote verification
- •Estimate hard tooling

Total Cost of Ownership TCO

Improved Product Design Practices Would Make U.S. Manufacturing More Cost Effective: *A Case to Consider Before Outsourcing to China. N. Dewhurst & D. Meeker 2004*

Outsourcing to China : A Case Study Revisited Seven Years Later, D.Meeker & J. Mortensen 2011

Time Standard Project

The Challenge

- •Needed six time standards completed in under two weeks
- Update legacy time standards.
- Create new product time standards.
- Low cost and quick creation time

Compaq Time Standard Project

Alternative methods

- MTM, MOST, Lucas, Westinghouse method, Assembly View, SEER, LASeR, XPI....
- When evaluated against time, \$\$, training, software investment.

Chose B&D

- Established tool for assembly operations
- Some flexibility to capture non assembly operations

DFA Customized Operation Libraries

DFMA Libraries are a storage mechanism for customized-operations.

	Category		
No.	Type	Name	Comment
1	Category	Example:CORE Operation library	
2	Misc Op	MTM: Place approximate <= 8 in	MTM:PA1
3	Assembly Op	AA1 g&p_2lbs_easy_app_code1	MTM-AA1 <8 in get and place command
4	Category	Ex: Standard Macro library	
5	Assembly Op	Typing process function	Macro: Key strokes, looks, reads combined
6	Assembly Op	Detrash operations	Macro: Various detrash operations
7	Category	Ex: Specific Macro library	
8	Assembly Op	Desk side pick to light procss	Macro: time to pick-to-light all necessary objects
9	Assembly Op	Wrapping machine	Macro: Time to wrap 1 cab using machine
10	Category	Ex: Standard Process Library	
11	Assembly Op	Deskside Final test time	B&D:sidefinl.dfa Deskside final test time
12	Assembly Op	Deskside Packing process	B&D:sidepack.dfa Deskside drawer packing p

B&D Design Analysis

Ξ (1) B&D	Design Analysis	111.3	0		
-	1.1 (2)	Assembly	1			
Ŀ	- 2.1	(3) Photo Cell assembly		1		
	\sim	3.1 Install plastic cover: PN 1			1	4.60
	\sim	3.2 Install rubber protector; PN	2		1	4.60
	\sim	3.3 Install Photo Cell: PN 3			1	6.10
	\sim	3.4 Inst. Back rubber protect PN	V 4		1	4.60
<	> 2.2	Install LCD: PN 5		1	4.6	0
<	> 2.3	Install PCA board: PN 6		1	14.	40
<	> 2.4	Install Key pad: PN 7		1	4.6	0
<	> 2.5	5 Install flex cable: PN 8		1	6.1	0
<	> 2.6) Install flex cable support:PN9		1	4.6	0
Ŀ	- 2.7	′ (4) Install Back of unit		1		
	\sim	4.1 Place back on unit PN 10			1	6.80
	0	4.2 Screw down back PN 11-13	7		6	50.30

Note work done on old version of DFMA software Operations Libraries do not look like this anymore but function in similar way

B&D Time Standard Tool

.(1)) Calculator Assembly	235.	52	
_	1.1 (2) Kitting Operation 1			
	2.1 Get tote	1	1.80)
	2.2 Walk to pick face	1	2.88	3
	2.3 Pick part & place in tote	17	21.4	12
	2.4 Check off on paperwork	11	17.8	32
_	1.2 (3) Deliver units to assembly area 1			
	3.1 Walk to assembly bench	1	3.78	3
_	1.3 (4) Assembly 1			
	 4.1 (5) Photo Cell assembly 	1		
	5.1 Install plastic cover: PN 1		1	3.4
	5.2 Install rubber protector; PN 2		1	3.4
	5.3 Install Photo Cell: PN 3		1	4.9
	5.4 Inst. Back rubber protect PN 4		1	3.4
	4.2 Install LCD: PN 5	1	3.45	5
	4.3 Install PCA board: PN 6	1	7.45	j j
	4.4 Install Key pad: PN 7	1	3.45	5
	4.5 Install flex cable: PN 8	1	4.95	5
	4.6 Install flex cable support:PN9	1	3.45	j i
	+ 4.7 (6) Install Back of unit	1		
_	1.4 (7) Close out paperwork process			
	7.1 Scan serial number	1	5.40)
) 2.1 Get paperwork	1	1.80)
	7.3 Sign complete name	1	7.92	2
	7.4 Turn page	1	1.51	
	7.5 Initial paperwork	1	3.96	5
_	1.5 (8) Test 1	<u> </u>		
	8.1 Check Add button	1	3.37	7
	8.2 Check off on paperwork	1	2.52	2
	8.3 Check Subtract button	1	3.37	7
	8.4 Check off on paperwork	1	2.52	2
	8.5 Check Divide button	1	3.37	7
	8.6 Check off on paperwork	1	2.52	2
	8.7 Check Multiply button	1	3.37	7
	8.8 Check off on paperwork	1	2.52	2
	8.9 Sign off on test	1	7.92	2
	1.6 (9) Pack 1			
	9.1 Place calculator in bag	1	9.72	2
	9.2 Tape the end of the bag	1	5.40)
	9.3 Place syrophom sides	2	9.90)
	9.4 Open box	1	3.96	5
	9.5 Place unit in box	1	2.70)
	9.6 Close box	1	7.92	2
	9.7 Staple box using foot stapler	1	10.0	98
\bigcirc	1.7 Place paperwork in bin 1	1.8	80	

Calculator Build

	Standard	Calculator build	Complete assembly
	creation time	standard time	Kit, build, test, pack
	(minutes)	(minutes)	(minutes)
B&D Standard tool	19.94	1.40	3.93
MTM	48.15	1.31	3.54
Time study AVG.	-	1.78	4.42
Time study A	-	1.80	4.58
Time study B	-	1.85	4.34
Time study C	-	1.70	4.33

Historical Statistics

Creation Time Historical Results B&D tool Historical 3 - 1* MTM-UAS 10 - 1 Most 10 - 1** MTM-1 40 - 1**

* Historical data based on total number of systems analyzed over 8 months.

** Historical data: Zjell B. Zandin Most work measurement Systems Book, Marcel Decker Inc. Copyright 1990 pg.14

Process Time Historical Results B&D standard tool accuracy with generic macros to within 5-15% of MTM-UAS times.

Product development

DFMA can be used throughout the entire Product Development Process

- •Early Product Costing
- •Competitive product benchmarking
- •Concept selection
- •Creation of time standards
- •Assembly Instructions
- •Deign Simplification
- •Cost reduction
- •Quality
- Vendor quote verification
- •Estimate hard tooling

DFMA Example-Comparing Estimates Against Vendor Quotes

Vision LPM

Load Port for Standard Mechanical InterFace SMIF enclosures

DFMA Example-Comparing Estimates Against Vendor Quotes

B&D Estimates Against Actual Quotes

DFMA Example-Vendor Quote

Item Description	QTY	Cost	B&D Estimate
DOOR,	1	\$22.34	\$9.40

112	795		2,500	1,500	1,000	500	250
	FOUP Door	\$55,000.00	\$14.17/ea.	\$15.59/ea.	\$17.30/ea.	\$18.74/ea.	\$22.34/ea.
	Delivery: (8) week	s ARO	Resin: LNP	DB 1004 EN	4MR, BK115		
	Tealing Description	Single quite calf	contained and	handanad ata	almald to al		1. (4)

Tooling Description: Single cavity self-contained *pre-hardened steel mold*, tri-plate gating with (4) pinpoint gates, pin ejection, flat parting line, and bead blast cavity finish. Notes:

- The molding material is a suggestion by our contact at LNP Corporation, based upon the need for optimum flatness. (20% glass bead filled polycarbonate)
- The flatness is difficult to predict. We are proposing a "tri-plate" gating design with (4) pin-point
 gates for help in improving flatness. A flatness specification of .010 cannot be guaranteed. We
 feel reasonably confident that we could mold between .012" and .020" flatness.
- "Sink" marks may be evident because of the intersecting wall section ratios. Any "sink" mark
 would not be part of the measured flatness.

148 Christian Street Oxford, CT 06478 203-888-0585 PTA CORP

Page 2 of 2

7350 Dry Creek Parkway Longmont, CO 80503 303-652-2500

DFMA Example-Data Collection for estimate refinement

Questions were asked to gather further information

•Material parameters and material cost from vendor, tonnage machine, and process information. PTA \$7.35/lb GE \$7.65/lb PTA is passing their material cost saving.

- •New Plastic Material database created
- •The cost estimate was revised using the above information.
- •New B&D estimate is \$23.30 VS. Vendor Quote \$22.34

Regression Analysis

Total Weight to Metal Only Material Charge

Indicates Strong Correlation

Based on believed market rates = a material adder of 30tog

Product development

DFMA can be used throughout the entire Product Development Process

- •Early Product Costing
- •Competitive product benchmarking
- •Concept selection
- •Creation of time standards
- •Assembly Instructions
- •Deign Simplification
- •Cost reduction

•Quality

Vendor quote verificationEstimate hard tooling

Quality Tool

Design for Assembly

Product Quality/Assembly Efficiency Correlation

Manual Assembly Efficiency - %

Every one second of assembly penalty time causes an average of 100 DPM

Quality Assessment Conclusions

- For many corporations part variability is no longer the quality issue; quality problems arise mainly in assembly
- Assembly quality problems seem to correlate strongly with assembly difficulties
- The key to quality improvement is to reduce both the number of assembly steps, and the average time per operation

Mistake-proofing achieves superior results, faster, and with less efforts.

A Big Secret

DFMA Back to Its Roots

Biggest bang for the buck Theoretical Minimum Part Count (TMPC)

How to get rid of parts

Theoretical Minimum Part Count

Part is a candidate for elimination

Theoretical Minimum Part Count TMPC

What is the best part in your design ?

Theoretical Minimum Part Count TMPC

What is the best part in your design ?

Answer: NO PART !!!!! You don't have to do anything --- design it, prototype it, document it, source it, inspect it, replace it

Some of the Intangible Cost of No Parts

Table 1 summarizes these average costs by program activity. While it is possible that in some cases the added costs of adopting a unique part design could be offset by lower manufacturing or purchasing costs, such choices should be justified and carefully documented.

Activity	Cost
Engineering and design	\$1 2,600
Testing ^a	1,000
Manufacturing	2,400
Purchasing	5,200
Inventory	1,200
Logistics support	5,100
Total	\$ 27,500

Table 1. Average Costs for Adding a Part into a System

^aThe testing cost was reduced significantly because not every part added to inventory requires testing. However, every part needs to be evaluated, either by similarity, bench test, or analysis.

IBM ProPrinter vs. Epson

EPSON PRINTER SUBASSEMBLY

FIG. 5 Exploded View of IBM Proprinter highlights design simplification in this product

Epson MX 80 **IBM PRO Printer** Total Assm. time sec. Total Assm. Time 1866 170. **Total Number of Total number of operations** 32. operations 185. Total parts/subs. Total parts/subs. 152 32. **Theoretical part count Theoretical part count** 41. 29

Digital Corporate Mouse

	Old	New
Part count	61	44
Mechanical	31	16
Electrical	28	30

Assm. Time	17 min.	6
Assm. Oprs.	83	56
Adjustments	11	0
Fasteners (3 types)	10	0
Material Cost Reduction	1	>40%

Case Study

Respironics BagEasy III

- 84% reduction in assembly time
 - 65% reduction in the number unique parts
 - 81% reduction in assembly operations
 - 6 patent applications

Mattel Color Spin

Case Study – Hypertherm HPR130 Plasma Cutter

Results:

- Over 50% part count reduction
- Over 75% assembly time reduction
- Factory output *quadrupled* without additional floor space
- Better design allows for:
- Tighter tolerance cutting
- Unit cuts as fast as some 200 amp units
- 2/3rds less operating cost per unit
- 1/10th warranty costs of predecessor
- Doubled annual sales
- More reliable unit

\$5 million savings in first 24 months alone

SWATCH

Mechanical Chronograph

SISTEM51 is 100 percent Swiss made and features an exceptional 90 hour power reserve. Hermetically sealed within its case, the 3 Hz movement delivers precise, long-lasting, maintenance-free performance.

There is much to explore in this intriguing new world. Unprecedented technological innovation (17 pending patents) enabled the development, in less than two years, of a self-winding mechanical movement with only 51 parts in five modules.

Design has only one screw !

NCR 2670 Point of Sales Terminal

85 % Part count reduction
75 % Assembly time reduction
44 % Reduction in labor cost
65 % Fewer suppliers
No assembly tooling
No fasteners
\$1.1 Mil. dollars lifetime labor
savings
1/3 Mfg. floor space saved

DFMA Back To Its Roots

Name	Quantity	Min. Part Criteria	Min. Part Co
Chass is	1	Base	1
Battery Terminal - dual	2		
Battery Terminal - single pos	1		
Battery Terminal - single neg	1		l
3 LED Lens	1		
3 LED Board & wires	1		l
3 LED Reflector	1		
Battery Wire	2		l
24 LED Board	1		
Screws - small	6		-
24 LED Reflector	1		
Cover - Lens	1	11	5
24 LED Lens	1		
Button	1		5
Batteries - AAA	3		
Cover - Hook/Mag	1		
Magnet	1		Ĵ.
Hook	1		
Hook retainer	1		
Screws - retainer	2		
Screws	3		
Labels	3		

Questions that Should Be Asked but Aren't Cris Tsai & David Meeker 31 DFMA forum June 2016

DFMA Back To Its Roots

"Perfection is reached not when there is no more to add but when there is no more to take away."

> Antoine de St. Exupery 1900 -1944

Cautionary Note - Pitfalls

- •DFMA is oversold and early results do not materialize
- •Poor selection of projects to implement the process on
- •The champion gets promoted and things die
- •Didn't renew the software
- Doesn't become part of the culture